

KDD2018

Scalable Active Learning by Approximated Error Reduction

Weijie Fu, Meng Wang, Shijie Hao, Xindong Wu Hefei University of Technology, China fwj.edu@gmail.com

https://github.com/fuweijie/AER

Experiment and Conclusion

Background

- The aim and limitation of existing active learning.

Scalable Active Learning

Experiment and Conclusion

I. Classification

II. Active Learning

Classification

Identifying the categories of unlabeled instances

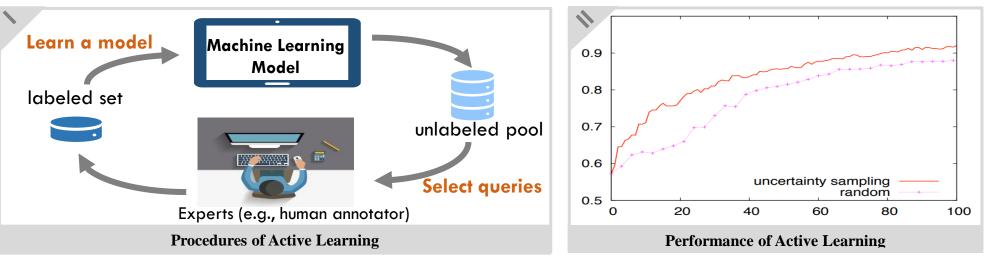
computer vision, handwriting recognition, speech recognition, document classification

- Difficulties of this problem
 - Quality of labeled instances
 - Expensive costs of collecting labels

5

II. Active Learning

□ Active Learning



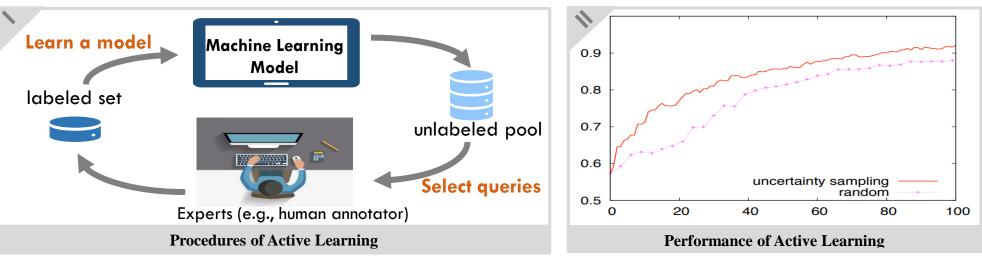
- Common procedures in the cycle.
 - Label prediction based on current **semi-supervised classifier**.
 - Measure estimation based on **query selection criterion**.
 - Query labeling by experts.

6

II. Active Learning

Keypoints O

□ Active Learning



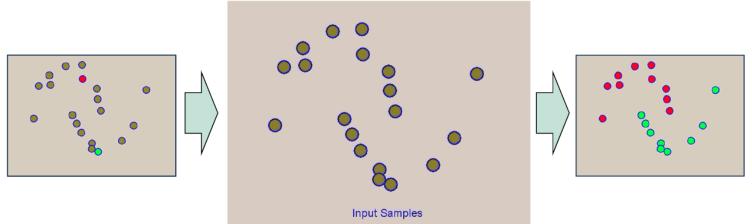
- Common procedures in the cycle.
 - Label prediction based on current semi-supervised classifier.
 - Measure estimation based on query selection criterion.
 - Query labeling by experts.

II. Query Selection Criterion

III. Limitations

□ Semi-Supervised Classifier (learn from labeled and unlabeled data)

- Graph-based Classifier
 - Illustration:



- Graph Construction + Label Propagation
- Advantages:
 - Easy for explanation; Analytic solution ...

8

I. Semi-Supervised Classifier

II. Query Selection Criterion

III. Limitations

Semi-Supervised Classifier

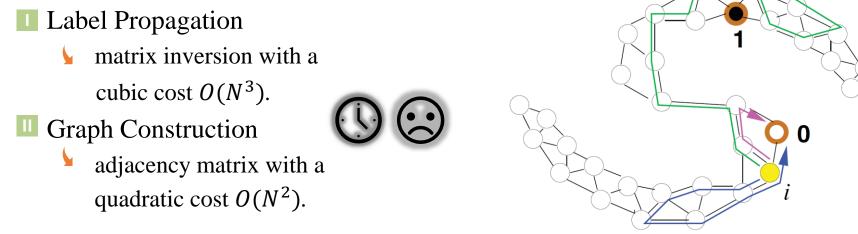
- Graph-based Classifier
 - **Formulation**:

$$minimize \quad \sum_{i}^{n} \|\boldsymbol{f}_{i} - \boldsymbol{y}_{i}\|^{2} + \frac{\lambda}{2} \sum_{i,j=1}^{n} W_{ij} \left\| \frac{1}{\sqrt{D_{ii}}} \boldsymbol{f}_{i} - \frac{1}{\sqrt{D_{jj}}} \boldsymbol{f}_{j} \right\|^{2} \Rightarrow minimize \|\boldsymbol{F} - \boldsymbol{Y}\|_{F}^{2} + \lambda tr[\boldsymbol{F}^{T}(\boldsymbol{I} - \boldsymbol{W})\boldsymbol{F}]$$

Optimal Solution:

 $\mathbf{F} = [\mathbf{I} + \lambda(\mathbf{I} - \mathbf{W})]^{-1}\mathbf{Y}$

• **P**rocedure:



III. Limitations

Query Selection Criterion

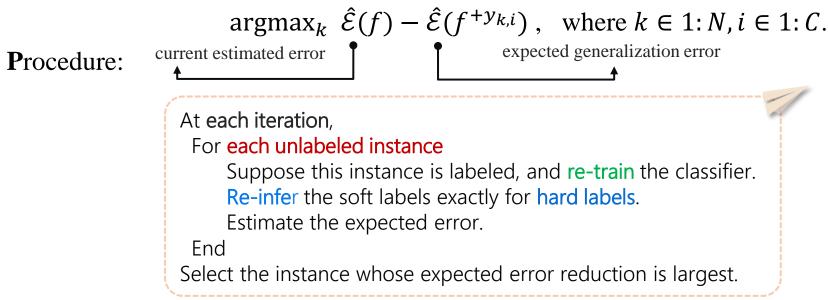
- A. Expected Error Reduction (EER)
 - **D**efinition: choose the instance with the largest error reduction \Rightarrow tradeoff on error reduction
 - **Formulation**:

 $\underset{\leftarrow}{\operatorname{argmax}_{k} \ \hat{\mathcal{E}}(f) - \hat{\mathcal{E}}(f^{+y_{k,i}}), \text{ where } k \in 1: N, i \in 1: C.}$

III. Limitations

Query Selection Criterion

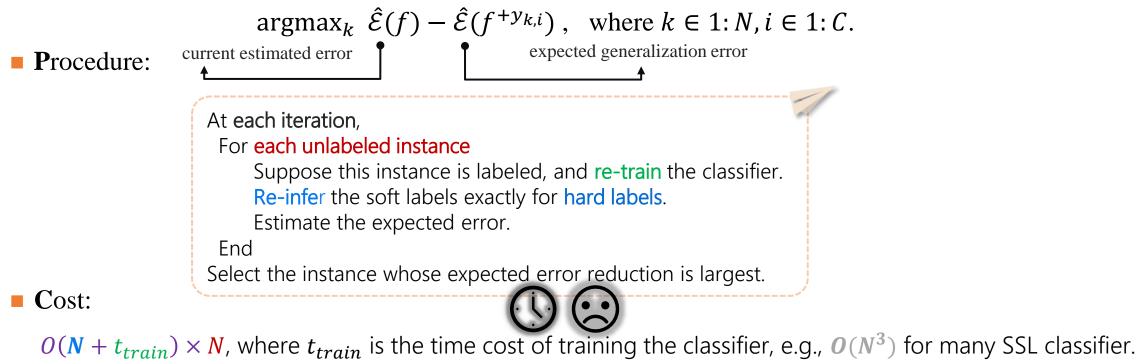
- A. Expected Error Reduction (EER)
 - **D**efinition: choose the instance with the largest error reduction \Rightarrow tradeoff on error reduction.
 - **Formulation:**



III. Limitations

Query Selection Criterion

- A. Expected Error Reduction (EER)
 - **D**efinition: choose the instance with the largest error reduction \Rightarrow tradeoff on error reduction.
 - **Formulation:**



II. Query Selection Criterion

III. Limitations

Query Selection Criterion

- A. Expected Error Reduction (EER)
- B. Uncertainty Sampling
 - **D**efinition: choose the instance with the largest uncertainty.
 - Procedure:

At each iteration, For each unlabeled instance avoid model retraining. Infer the labels of unlabeled instances. Estimate the uncertainty. End Select the instance with the largest uncertainty.

Analysis:

• Cost: reduce the time cost to O(N) without re-training.

Effectiveness: ignore the influence of labels; outliers may be selected.

II. Query Selection Criterion

III. Limitations

Limitations

- Semi-supervised Classifier
 - A. Graph-based Classifier
 - Large time cost of graph construction and mode training.
- Query Selection Criterion
 - A. Expected Error Reduction

(Perform well at either tuning decision boundaries or discovering new classes)

- Large time cost of **model re-training** and **label re-inference**.
- B. Uncertainty Sampling
 - Ignore the **influence** of labels on the **classifier** and **other instances**.

Scalable Active Learning

- An alternative to select high-quality queries efficiently.

Experiment and Conclusion

15 I. Motivations

II. Efficient Semi-Supervised Classifier

III. Scalable Query Selection

Motivations

Efficient Semi-Supervised Classifier

- Reduce the time cost of graph-based learning.
- Keep a high classification accuracy.

Scalable Query Selection Criterion

- Cut down the time cost of query selection.
- Keep the high quality of selected instances.

16 I. Motivations

II. Efficient Semi-Supervised Classifier

III. Scalable Query Selection

Motivations

Efficient Semi-Supervised Classifier

- Cut down the time cost of graph-based learning.
- Keep a high classification accuracy.

□ Scalable Query Selection

- Cut down the time cost of query selection.
- Keep the high quality of selected instances.

17 I. Motivations

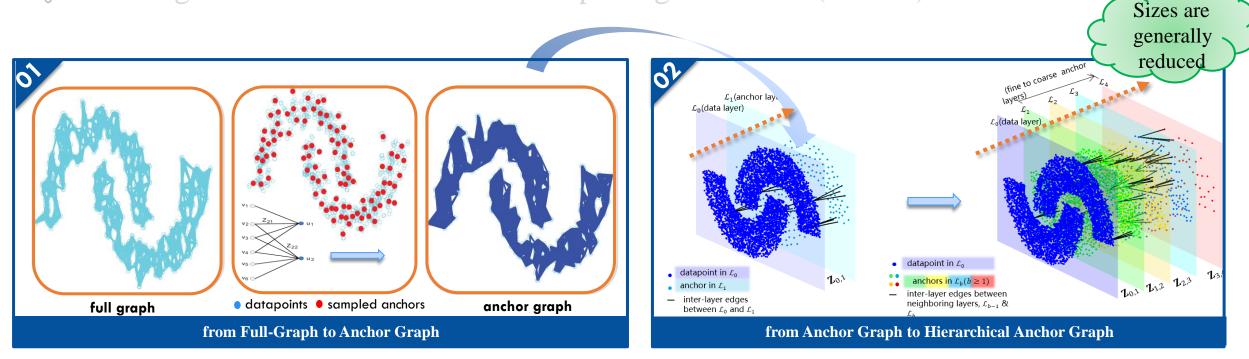
II. Efficient Semi-Supervised Classifier

III. Scalable Query Selection

Efficient Semi-Supervised Classifier

Hierarchical Anchor Graph

Dearning with Hierarchical Anchor Graph Regularization (HAGR)



18 I. Motivations

II. Efficient Semi-Supervised Classifier

Efficient Semi-Supervised Classifier

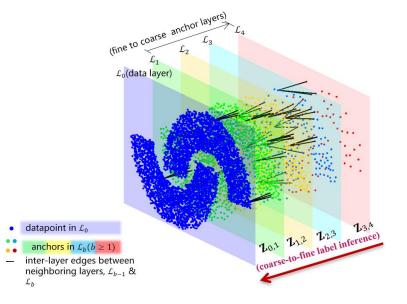
Hierarchical Anchor Graph

& Learning with Hierarchical Anchor Graph Regularization (HAGR)

• Formulation: $\sum_{i=1}^{l} \|\mathbf{Z}_{i.}^{\mathrm{H}}\mathbf{A} - \mathbf{y}_{i}\|^{2} + \frac{\lambda}{2} \sum_{i,j}^{n} W_{ij} (\mathbf{Z}_{i.}^{\mathrm{H}}\mathbf{A} - \mathbf{Z}_{j.}^{\mathrm{H}}\mathbf{A})^{2}.$

- **Label smoothing** (Laplacian matrix) based on the **finest** anchors with $\mathbf{W} = \mathbf{Z}^{0,1^{\mathrm{T}}} \mathbf{Z}^{0,1}$.
- Label inference (hierarchically) from the coarsest anchors with Z^H = Z^{0,1}Z^{1,2} ... Z^{h-1,h}.
- Solution: $\mathbf{A} = \left(\mathbf{Z}_{L}^{H^{T}}\mathbf{Z}^{H} + \lambda \tilde{\mathbf{L}}\right)^{-1} \mathbf{Z}_{L}^{H^{T}}\mathbf{Y}_{L}$

• Time cost: reduced to $O(NN_h^2 + N_h^3)$.



19 I. Motivations

II. Efficient Semi-Supervised Classifier

III. Scalable Query Selection

Motivations

- □ Efficient Semi-Supervised Classifier
 - Cut down the computational cost of graph construction and model optimization.
 - Keeping a satisfying performance on the classification accuracy.

Scalable Query Selection Criterion

- Cut down the computational cost of query selection.
- Keeping a satisfying performance on the quality of selected instances.

20 I. Motivations

II. Efficient Semi-Supervised Classifier

Scalable Query Selection

- <u>Approximated</u> $\underline{\mathbf{E}}$ rror $\underline{\mathbf{R}}$ eduction (AER)
 - Definition:
 - an approximated estimation of expected error reduction with limited computations.
 - Formulation: average estimated error argmax_{xq} I_q × (<sup>εr_(q)/<sub>I_(q))^{1-ε}
 where I_q is the expected impact over all instances, ε is the hyper-parameter and
 <sup>εr_(q)/_{I_(q)} is the approximated ratio between the error reduction and the expected impact over nearby instances.
 Interpretation:
 error reduction =expected impact × ^{expected error reduction}/_{expected Impact}.
 approximated error reduction =expected impact × (^{expected error reduction}/_{expected Impact})^{1-ε}/_{nearby datapoints}.
 </sup></sub></sup>
 - Setting ϵ as average estimated error within $(0, 1) \Rightarrow$ Adaptive tradeoff between two terms with the error decreasing.

21 I. Motivations

II. Efficient Semi-Supervised Classifier

Scalable Query Selection

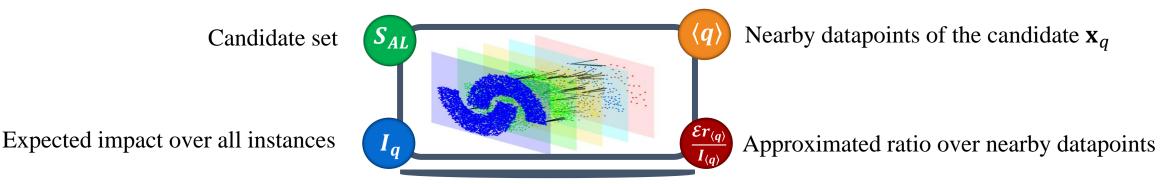
$\underline{\mathbf{A}} pproximated \ \underline{\mathbf{E}} rror \ \underline{\mathbf{R}} eduction \ (\mathbf{AER})$

Formulation:

$$\operatorname{argmax}_{\mathbf{x}_{q}} I_{q} \times \left(\frac{\varepsilon r_{\langle q \rangle}}{I_{\langle q \rangle}}\right)^{1-\varepsilon}, q \in S_{AL}$$

where I_q is the expected impact over all instances, $\frac{\varepsilon_{r_{\langle q \rangle}}}{I_{\langle q \rangle}}$ is the approximated ratio between the error reduction and the expected impact over nearby instances, and ε is the tradeoff parameter.

Keypoints:



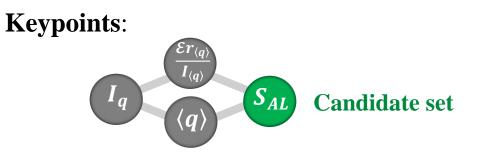
22 I. Motivations

 $\overline{\mathbf{A}}$

II. Efficient Semi-Supervised Classifier

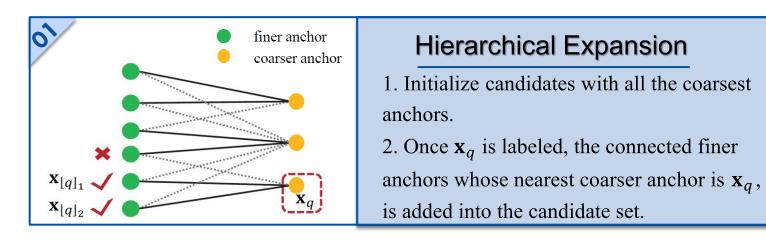
Scalable Query Selection

<u>Approximated</u> <u>Error</u> <u>R</u>eduction (AER)



Details:

<u>Hierarchical expansion of candidates</u>



23 I. Motivations

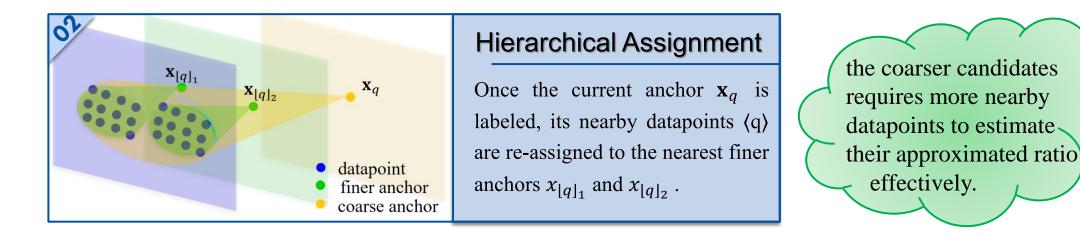
II. Efficient Semi-Supervised Classifier

III. Scalable Query Selection

Scalable Query Selection

<u>Approximated</u> <u>Error</u> <u>R</u>eduction (AER)

Keypoints: S_{AL} S_{AL} I_q Nearby datapoints of x_q Hierarchical assignment of nearby datapoints

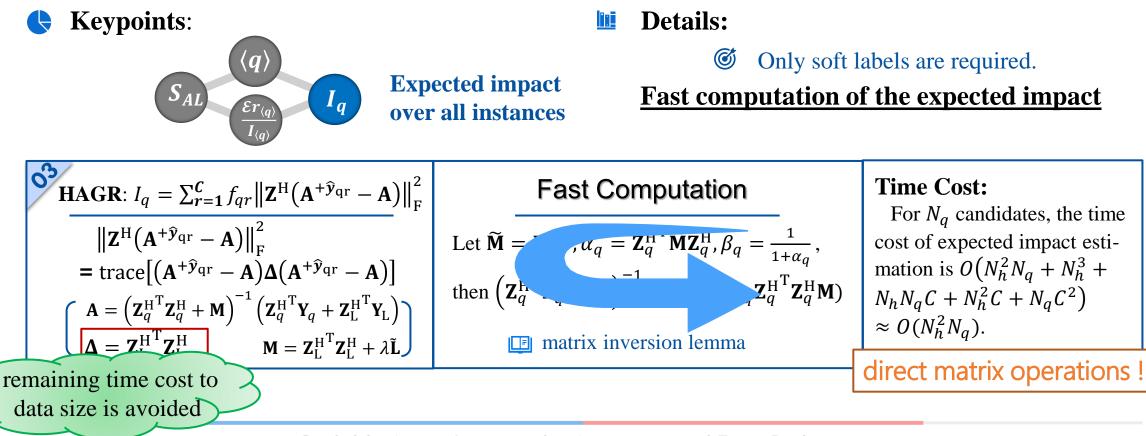


24 I. Motivations

II. Efficient Semi-Supervised Classifier

Scalable Query Selection

<u>Approximated</u> $\underline{\mathbf{E}}$ rror $\underline{\mathbf{R}}$ eduction (AER)



 $\mathcal{E}r_{\langle q \rangle} = \sum_{i=1}^{N_{\langle q \rangle}} \eta_i \ell(f_i, \hat{f}_i) \approx \eta \sum \ell(f_i, \hat{f}_i)$

 η :degree of the expected error will be reduced.

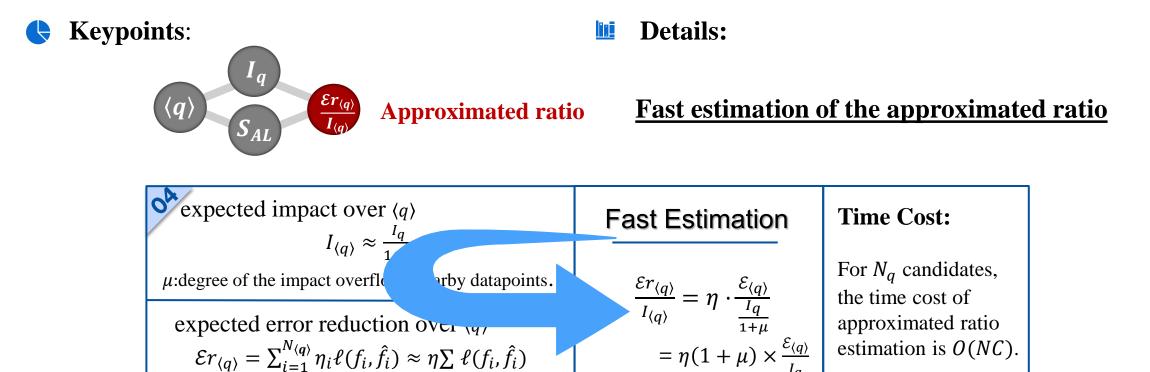
I. Motivations 25

II. Efficient Semi-Supervised Classifier

estimation is O(NC).

Scalable Query Selection

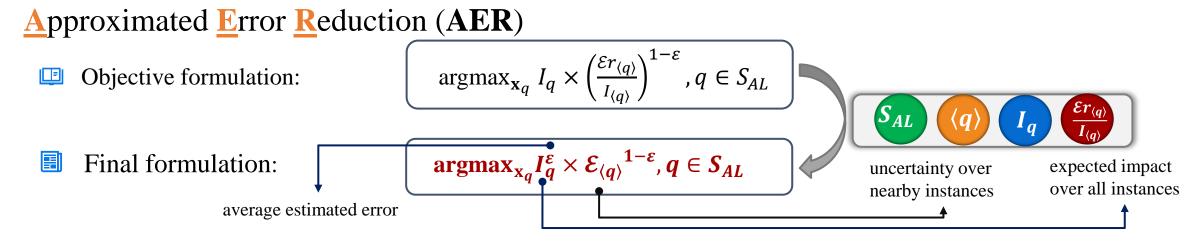
Approximated Error Reduction (AER)



26 I. Motivations

II. Efficient Semi-Supervised Classifier

Scalable Query Selection



AER enables an efficient estimation of error reduction without re-inferring labels of instances.

The expected impact can be calculated for all candidates via direct matrix operations rather than multiple iterations.

Apart from the **similar time cost to** that of the **uncertainty sampling**, **the remaining time cost** of our AER-based approach is **independent of data sizes** during the query selection.

AER focuses on **global impact first** and pays attention to **local uncertainty later**, which provides an opportunity to achieve **comparable or even higher accuracies** than the EER-based approach.

Experiment and Conclusion

²⁸ I. Experiment

II. Conclusion

Experiment

Efficient Semi-Supervised Learning on Hierarchical Anchor Graph

Scalable Active Learning with Approximated Error Reduction

Classification error rates (%) on **USPS-Train** (7,291 samples) with l = 100 labeled samples. m = 1000 for four versions of AGR. The running time of k-means clustering is 7.65 seconds.

Method	Error Rate	Running Time	
	(%)	(seconds)	
1NN	20.15 ± 1.80	0.12	
LGC with 6NN graph	$8.79 {\pm} 2.27$	403.02	
GFHF with 6NN graph \sim	5.10 ± 0.43	413.28	
$random AnchorGraphReg^0$	11.15 ± 0.77	2.55	
random AnchorGraphReg	10.30 ± 0.75	8.85	
AnchorGraphReg ⁰	$7.40{\pm}0.59$	10.20	
AnchorGraphReg	$6.56{\pm}0.55$	16.57	

I. Experiment

29

II. Conclusion

Experiment

Efficient Semi-Supervised Learning on Hierarchical Anchor Graph

Scalable Active Learning with Approximated Error Reduction

							_
# of labeled	1NN	LSVM	AGR	EAGR	HAGR	HAGR	
samples			-30,000	-30,000	-30,000-5,000	-300,000-30,000-500	<u>0</u>
100	60.16 ± 1.96	59.67 ± 2.19	$\overline{89.87 \pm 1.78}$	90.27 ± 0.18	89.46 ± 1.24	91.36 ± 0.70	
200	68.66 ± 1.29	64.46 ± 2.37	91.15 ± 0.59	91.76 ± 0.57	90.85 ± 0.50	92.46 ± 0.42	
300	72.78 ± 0.81	66.79 ± 2.25	92.21 ± 0.51	92.37 ± 0.51	91.66 ± 0.42	93.05 ± 0.37	_
400	75.33 ± 0.60	68.33 ± 1.97	92.47 ± 0.44	92.73 ± 0.38	92.16 ± 0.36	93.43 ± 0.37	-
500	77.24 ± 0.55	70.65 ± 1.49	92.70 ± 0.41	93.05 ± 0.29	92.50 ± 0.29	93.78 ± 0.24	- I.
600	78.58 ± 0.54	72.64 ± 1.36	92.80 ± 0.34	93.17 ± 0.27	92.64 ± 0.26	93.90 ± 0.27	- I/
700	79.87 ± 0.70	73.80 ± 1.27	93.12 ± 0.31	93.41 ± 0.30	92.92 ± 0.28	94.10 ± 0.25	
800	81.02 ± 0.50	73.87 ± 1.18	93.19 ± 0.23	93.51 ± 0.15	93.06 ± 0.16	94.21 ± 0.15	
900	81.76 ± 0.49	73.97 ± 0.96	93.29 ± 0.36	93.63 ± 0.21	93.18 ± 0.26	94.28 ± 0.15	_
1000	82.51 ± 0.42	76.95 ± 1.13	93.49 ± 0.22	93.79 ± 0.15	93.37 ± 0.16	94.39 ± 0.12	_

Classification accuracies (%) with different number of labeled samples on the MNIST8M dataset.

The comparison of time costs (in seconds) of AGR, EAGR, and HAGR methods on the MNIST8M dataset.

Dataset AGR-30,000	EAGR-30,000	HAGR-30,000-5000	HAGR-300,000-30,000-5,000
MNIST8M 665.07	662.60	104.97	137.54

I. Experiment

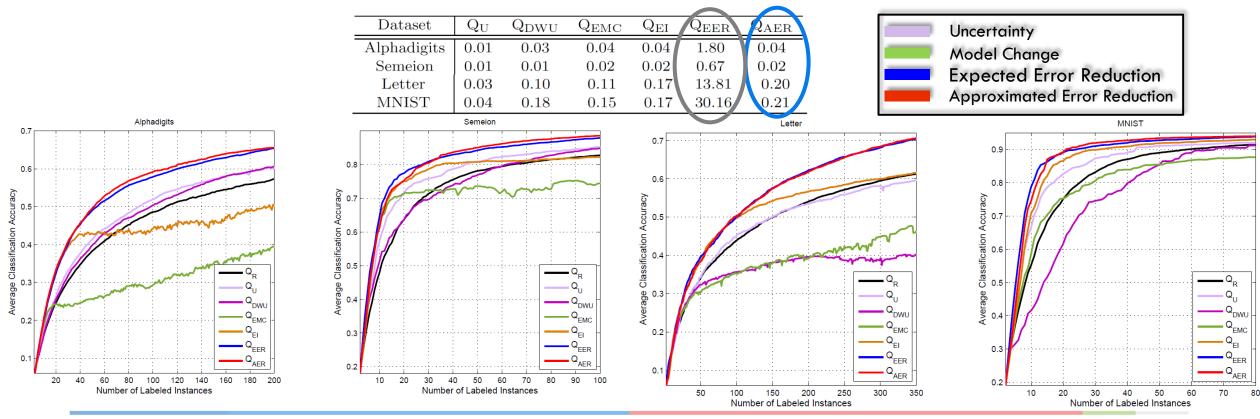
30

II. Conclusion

Experiment

Efficient Semi-Supervised Learning on Hierarchical Anchor Graph

Scalable Active Learning with Approximated Error Reduction



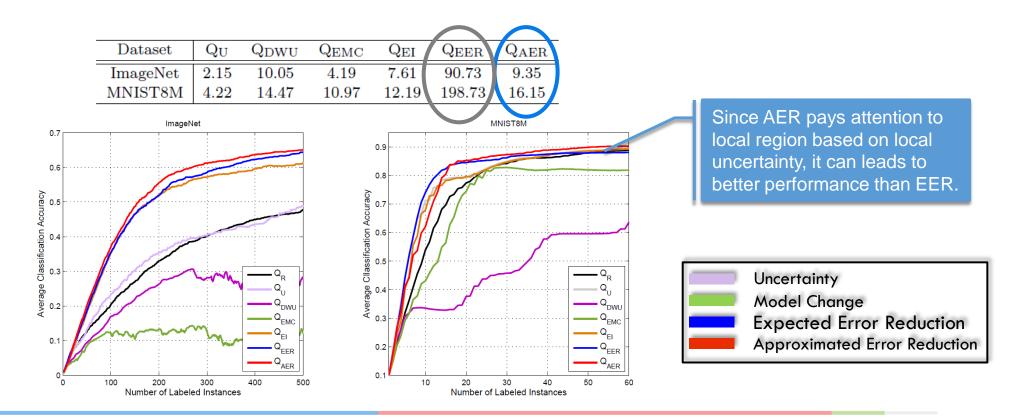
31 I. Experiment

II. Conclusion

Experiment

Efficient Semi-Supervised Learning on Hierarchical Anchor Graph

Scalable Active Learning with Approximated Error Reduction



I. Experiment

32

II. Conclusion

Conclusion

Semi-supervised classifier on hierarchical anchor graph.

Query selection criterion with approximated error reduction.

Scalable active learning for efficient classification.

Reference

33

- Weijie Fu, Meng Wang, Shijie Hao, and Xindong Wu. 2018. Scalable Active Learning by Approximated Error Reduction. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
- Meng Wang, Weijie Fu, Shijie Hao, Hengchang Liu, and Xindong Wu. 2017. Learning on big graph: Label inference and regularization with anchor hierarchy. IEEE Transactions on Knowledge and Data Engineering 29, 5 (2017), 1101–1114.
- Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. 2003. Combining active learning and semi-supervised learning using gaussian fields and harmonic functions. In Proceedings of the International Conference on Machine Learning, Vol. 3.
- Wei Liu, Junfeng He, and Shih Fu Chang. 2010. Large graph construction for scalable semi-supervised learning. In Proceedings of the International Conference on Machine Learning. 679–686.
- Oisin Mac Aodha, Neill D. F. Campbell, Jan Kautz, and Gabriel J. Brostow. 2014. Hierarchical subquery evaluation for active learning on a graph. In Proceedings of the Conference on Computer Vision and Pattern Recognition. 564–571.
- Wenbin Cai, Ya Zhang, and Jun Zhou. 2013. Maximizing expected model change for active learning in regression. In Proceedings of the IEEE International Conference on Data Mining. 51–60.
- Gautam Dasarathy, Robert Nowak, and Xiaojin Zhu. 2015. S2: An efficient graph based active learning algorithm with application to nonparametric classification. In Proceedings of the Annual Conference on Learning Theory. 503–522.
- Ajay J Joshi, Fatih Porikli, and Nikolaos P Papanikolopoulos. 2012. Scalable active learning for multiclass image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 11 (2012), 2259–2273.
- Xin Li and Yuhong Guo. 2013. Adaptive active learning for image classification. In Proceedings of the Conference on Computer Vision and Pattern Recognition. 859–866.
- Marius Muja and David G Lowe. 2014. Scalable nearest neighbor algorithms for high dimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence 36, 11 (2014), 2227–2240.
- Meng Wang, Weijie Fu, Shijie Hao, Dacheng Tao, and Xindong Wu. 2016. Scalable semi-supervised learning by efficient anchor graph regularization. IEEE Transactions on Knowledge and Data Engineering 28, 7 (2016), 1864–1877.
- Burr Settles. 2010. Active learning literature survey. University of Wisconsin, Madison 52, 55-66 (2010), 11.

Thank you for attention!

Weijie Fu, Meng Wang, Shijie Hao, Xindong Wu Hefei University of Technology, China

https://github.com/fuweijie/AER
 fwj.edu@gmail.com

