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Abstract—Over the last decade, deep neural networks (DNNs) are regarded as black-box methods, and their decisions are criticized
for the lack of explainability. Existing attempts based on local explanations offer each input a visual saliency map, where the supporting
features that contribute to the decision are emphasized with high relevance scores. In this paper, we improve the saliency map based
on differentiated explanations, of which the saliency map not only distinguishes the supporting features from backgrounds but also
shows the different degrees of importance of the various parts within the supporting features. To do this, we propose to learn a
differentiated relevance estimator called DRE, where a carefully-designed distribution controller is introduced to guide the relevance
scores towards right-skewed distributions. DRE can be directly optimized under pure classification losses, enabling higher faithfulness
of explanations and avoiding non-trivial hyper-parameter tuning. The experimental results on three real-world datasets demonstrate
that our differentiated explanations significantly improve the faithfulness with high explainability. Our code and trained models are
available at https://github.com/fuweijie/DRE.
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1 INTRODUCTION

Deep neural networks (DNNs) have achieved high accura-
cies in a wide range of fields, such as image recognition [11],
and natural language processing [10]. However, they often
lack meaningful explanations about how specific decisions
are made and are regarded as black-box methods. In par-
ticular, the explanation should take both faithfulness and
explainability into account. The faithfulness estimates the
fidelity between the explanation and the decision behavior
of original DNNs, and the explainability quantifies how
easy it is to understand the explanation for humans.

Local explanation methods are proposed to address this
issue. They provide users an understandable rationale for
each specific decision with a visual saliency map, where the
relevance score of each feature indicates its contribution to
the decision. For high faithfulness, the supporting features
contributing to increase the probability of the target class are
supposed to obtain high scores, and the remaining features
regarded as backgrounds are expected to get almost zero
scores. In particular, gradient-based explanations compute
the partial derivative of the class probability with respect
to input features via back-propagation [2], [20]. Besides,
perturbation-based explanations aim to find the smallest re-
gion, which allows a confident decision directly or prevents
a confident decision once being removed [8]. By applying
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Fig. 1. Comparison of different saliency maps: (a) The proposed DRE,
(b) Vanilla Gradient [20], (c) Grad-CAM++ [2], (d) Mask Generator [4],
and (e) Extreme Perturbation [7].

various ad hoc constraints on the region and lowering the
contributions of intricate supporting features, they maintain
faithfulness and improve explainability.

To provide better explanations of the decisions, differ-
entiated saliency maps are preferred. That is, the strong
supporting features that significantly contribute to the probability
of the target class are highlighted with very high scores, the weak
supporting features that slowly increase the probability obtain
lower scores, and the other features regarded as the background
have almost zero scores. Based on the differentiated explana-
tions, users not only can locate the whole set of supporting
features but also figure out which parts of them are more
important than the others. For illustration, two examples
are shown in Fig.1(a), which not only capture the shapes of
the whole animals but also provide detailed insights that
their heads contribute more than the remaining parts.

However, the existing local methods fail to produce the
differentiated explanations. For example, instead of directly
addressing the basic question ”what makes this image
belong to the target class”, the gradient-based methods
answer the question ”what makes this instance more or
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Fig. 2. The saliency maps obtained from the right-skewed distribution
controller to the left-skewed distribution controller, illustrating the benefit
of the right-skewed distribution for human-friendly explanations.

less similar to the target class” [16], leading to noisy results
within the same region (Fig.1(b)). [2], [19] propose to create
saliency maps by combining the gradients with the corre-
sponding feature maps at high-level layers. However, they
ignore the fine-grained information within low-level layers
and bring coarse saliency maps (Fig.1(c)). In addition, the
perturbation-based methods are formulated to highlight the
supporting features directly, which ignore the different de-
grees of importance of these features [4] (Fig.1(d)). Recently,
some explanation methods introduce soft ad hoc constraints
and data augmentation techniques to improve their saliency
maps [6], [24]. Nevertheless, they either significantly in-
crease the number of iterations for optimizing each saliency
map, or require users to carefully tune hyper-parameters to
trade-off the constraints and the classification loss, leading
to non-negligible costs. Although [7] introduces extreme
perturbations with hard constraints to ease the setting of
hyper-parameters, its saliency maps ignore some parts of
the supporting features and still lose the differentiation on
the detected supporting features (Fig.1(e)).

In this paper, we propose to learn a Differentiated Rel-
evance Estimator (DRE) to construct differentiated expla-
nations. Leveraging the quantitative observations found in
[2], [7] that the occlusion of 5% (25%) pixels in natural
images can bring nearly 50% (90%) drop in classification
confidence, we present distribution controllers to guide the
relevance scores towards right-skew distributions [3], so
as to improve the consistency between the scores of input
features and the actual contributions. Our qualitative exper-
imental analysis on the skewness of distributions addition-
ally shows the effectiveness of the right-skewed distribution
for building human-friendly explanations, as displayed in
Fig.2. We introduce the detailed setting of the controller by
establishing the connections between its input and output
distributions and then integrate it with a trainable mask
generator to build the final estimator. Benefiting from the
controller, we directly optimize DRE under classification
losses, which avoids all ad hoc constraints and non-trivial
hyper-parameter tuning. We further discuss a simple trick
to improve saliency maps based on the ranking of relevance
scores itself, which offers DRE more flexibility to address the
various proportions of supporting features across instances.

The main contributions of our work are as follows.

• We introduce differentiated explanations and pro-
pose a novel relevance estimator DRE by integrat-
ing a distribution controller with a trainable mask
generator. We develop a practical controller to guide

relevance scores towards the desired right-skewed
distributions, where the involved hyper-parameters
can be easily set.

• We introduce classification losses to train DRE di-
rectly. It avoids the non-trivial hyper-parameter tun-
ing on ad hoc constraints and also significantly im-
proves the faithfulness of explanations.

• We empirically demonstrate the effectiveness of the
above innovations with targeted ablation studies. Be-
sides, the experimental comparison to other methods
shows that DRE not only obtains better quantitative
performance but also provides differentiated saliency
maps for human-friendly explanations.

• We extend DRE with simple tricks with post hoc
tuning. The results show that DRE can easily benefit
from itself and be adaptive to different images.

2 RELATED WORK

Gradient-based methods. Gradient-based methods lever-
age back-propagation to track information from the DNN’s
output back to its input [20]. In general, these methods are
advantageous in their high computational efficiency, i.e.,
using a few forward-and-backward iterations is sufficient
to generate saliency maps. However, the saliency maps
based on the naive gradients are visually noisy and hard to
understand. To address this issue, Smooth Grad [22] reduces
the visual noise by introducing noise to inputs repeatedly,
and Integrated Grad [24] estimates the global contribution of
each feature rather than the local sensitivity. Guided back-
prorogation [23] modifies the gradients of ReLU functions
by discarding negative values at the back-propagation pro-
cess. Besides, recent methods propose to create saliency
maps by combining the gradients with the corresponding
feature maps. For example, Grad CAM [19] and Grad CAM
++ [2] take advantage of high-level feature maps to make
saliency maps cleaner. Nevertheless, they inevitably sacri-
fice the detailed estimation of the contributions of input
features and lead to coarse saliency maps.

Perturbation-based methods. Perturbation-based meth-
ods optimize the saliency map of each decision by per-
turbing its input features and observing the change in the
output of DNNs. For example, [8] designs a preservation
game to find the smallest region that significantly increases
the probability of the target class. The authors also design
a deletion game by preventing DNNs from recognizing ob-
jects. To improve the explainability, [6] regularizes saliency
maps with middle-level feature maps and optimizes them
by reconstructing higher-level feature maps. [7] further in-
troduces extreme perturbations with a hard constraint on
saliency maps, aiming to avoid the hyper-parameter tuning
on soft ad hoc constraints. Nevertheless, to obtain a high-
quality explanation, the above methods demand hundreds
of iterations for optimizing the saliency map for each image,
leading to non-negligible time costs. Recently, [4] proposes
an efficient method for real-time saliency detection, which
utilizes a trainable network to generate saliency maps.

Model-agnostic methods. To make the explanations
compatible with more types of data and black-box classi-
fiers, model-agnostic methods are proposed, such as LIME
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Fig. 3. The framework of our differentiated relevance estimator, where a distribution controller C is introduced right after the mask generator G. For
each instance I, G takes the feature maps of the neural network E(I) as inputs and feeds the obtained mask X into the controller C. The detailed
process flow inside the mask generator G can be found in Sec.3.2.2. Then C guides the relevance scores towards the right-skewed distribution for
a differentiated mask through X→Y→Z. The final mask M with the original size is obtained via upsampling. In addition, we annotate the spatial
sizes of feature maps and display the expected distributions of the scores within the controller.

[17], SHAP [15], and Anchor [18]. In particular, LIME em-
ploys more interpretable linear models to approximate the
decisions of black-box classifiers. It assumes that each expla-
nation can be derived from the points randomly generated
around the neighborhood of the instance and their proxim-
ity measures. SHAP further introduces a united framework
for interpreting decisions based on Shapley values and
builds its connection to LIME. Nevertheless, these methods
generally take much larger time costs to converge. For
example, LIME takes around 10 minutes to explain each
decision of Inception networks, and Shapley values take a
more considerable time cost to compute [17].

3 DIFFERENTIATED EXPLANATION

3.1 Problem Statement

In a multi-class classification task, suppose a DNN classifier
f is already trained over a training set. For each instance
I, local explanation aims to find out the contributions of its
input features to the probability of the target class that we
want to interpret. Take image classification as an example,
where Ii,j denotes to the pixel of I at the location of i, j. The
corresponding local explanation is represented by a same-
size mask1 M, in which each relevance score Mi,j∈[0, 1]
represents the contribution of Ii,j for the target probability.
To improve explanations, differentiated masks are preferred.

We first analyze the perturbation-based methods [4], [8]
in Sec. 3.2 and then introduce our method for differentiated
explanations with skewed distributions in Sec. 3.3 - Sec. 3.5.
Some important notations used in Sec. 3 are listed in Tab.1.

1. In this paper, we do not distinguish saliency maps and masks, as
both indicate the permutation of relevance scores of an instance.

TABLE 1
Notations and definitions.

Notation Definition
E The encoder of the classifier.
G The mask generator after the encoder.
C The distribution controller after the generator.
t The label of the target (predicted) class.
l The number of convolutional layers.
I The notation for images.
B The notation for background images.
M The notation for saliency maps or masks.
i, j, k The symbols used for indexes.
Fk The feature maps at the k-th layer (1 ≤ k ≤ l).
Vk The embedding vector of the k-th class.
F̂l The last feature maps after the spatial attenuation.
X The output of the mask generator G.
Y The intermediate variable inside the controller C.
Z The output of the distribution controller C.
`· The symbol for different losses.

ψ(·, ·) The image perturbation with Eq.1.
ω(x) The instance normalization on x with Eq.6.
ϕ(y) The transformation function on y with Eq.7.
p(z) The probability density function of the variable z.
E[x] The expectation of the variable x.
V[x] The variance of the variable x.
η, h The parameters inside C, set based on p(z).

3.2 Perturbation Analysis

3.2.1 Formulation of Perturbation-based Methods
To find supporting pixels, these methods perturb I accord-
ing to an initialized mask M and introduce an alternative
background image B to reduce the amount of unwanted
evidence. Specifically, the perturbation is defined as

ψ(I,M) = I�M + B� (1−M), (1)
where � denotes the Hadamard product. Then these meth-
ods feed the perturbed image into the classifier and optimize
the mask to locate the supporting pixels that increase the
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probability of the target class [4]. Specifically, let t denote
the label of the target class, and ft(ψ(I,M)) is the corre-
sponding class probability of the above perturbed image.
The objective `pert of these methods can be formulated as

argminM−ft(ψ(I,M)) + λbgft(ψ(I,1−M))

+ λavΘav(M) + λtvΘtv(M),
(2)

where −ft(ψ(I,M)) encourages the supporting pixels to
obtain high relevance scores, and ft(ψ(I,1-M)) aims to
avoid the supporting pixels being regarded as the back-
ground. Besides, the constraint Θav(·) is used to minimize
the area of the mask, and Θtv(·) enforces it to be smooth.

3.2.2 Real-time Mask Generator

The iterative optimization for the above problem results in a
considerable time cost for each test image. Thus, a mask gen-
erator G that produces real-time saliency maps is proposed
in [4]. The simplified architecture is displayed at the bottom-
right of Fig.3, which consists of a class-related spatial filter,
three bottleneck cells, and a standard convolutional layer.

During the mask generation, the classifier first produces
raw feature maps {Fk}lk=1 at multiple layers for each image
based on the encoder E and obtains its label t=argmaxkfk.
Then for the last feature maps Fl, the spatial filter uses
its class-related embedding vectors to attenuate the spatial
locations whose feature vectors are dissimilar to the embed-
ding of the target class. Let Vt be the above embedding
vector. The output of the spatial filter at the location i, j
denoted as F̂lij is calculated as

F̂lij = Flijsigmoid(Flij
T
Vt). (3)

where Flij denotes the feature vector of Fl at the location
i, j. The first bottleneck cell then upsamples the filtered
maps F̂l by a factor of two using transposed convolutions
[29]. It introduces its bottleneck block [11] to generate new
feature maps based on the concatenation of the upsampled
maps and the higher-resolution raw feature maps Fl−1. The
following two bottleneck cells repeat this process as shown
in Fig.3, and the channel numbers of their generated feature
maps are the same as those of the corresponding upsampled
feature maps. The standard convolutional layer takes the
outputs of the final bottleneck cell and produces a one-
channel feature map X at a coarse scale such as 56×56.
Finally, for this coarse mask X=G(E(I), t), the upsampling
based on bilinear interpolation is employed to obtain a
smoother mask at the image scale as M=upsample(X).

Now we consider the optimization of the spatial filter
and the remaining parts of the mask generator. Similar to
metric learning [14], the class-related embedding vectors in
the spatial filter can be gradually updated by maximizing
the similarity to the feature vectors of the same-class images
while minimizing the similarity to those of different-class
images. Thus, we assign training images with true labels
(k=t) and fake labels (k 6=t) iteratively and update the em-
bedding vectors Vk by minimizing the following loss:

`embed(Fl,Vk) =

−
∑

(sigmoid(Flij
T
Vk)), k = t;∑

(sigmoid(Flij
T
Vk)), k 6= t.

(4)

Fig. 4. The examples of the masks obtained with non-monotonic map-
pings, where higher scores can not guarantee larger contributions.

After that, the remaining parts of the mask generator can be
optimized based on its generated mask M via Eq.2. Since
the mask generator is trained offline, we can obtain a real-
time explanation based on a single forward-pass.

3.2.3 Limitation Analysis
Lack of differentiation. The perturbation-based explana-
tions are formulated to distinguish the supporting features
from the background and are generally optimized based
on a large number of iterations. Although mask generators
significantly accelerate the explanations, they still fail to con-
sider the different degrees of importance of the supporting
features, and their obtained masks are lack of differentiation.

Sensitive hyper-parameter tuning. During the training
phase, balancing the trade-offs between the classification
loss and the additional soft constraints, e.g., the smoothing
term in Eq.2, involves a non-trivial hyper-parameter tuning
process. Since the quality of masks is subjective for evalu-
ation, it increases the burden of learning a good generator
where the Bayesian optimization is hard to employ [28].

3.3 Principles of Controllers

To produce differentiated saliency maps, we first introduce
the concept of distribution controllers C, which guides the
relevance scores towards desired distributions. We place the
controller right after the generator to together compose the
differentiated relevance estimator DRE. Suppose X is the
initial output of the generator (as we mentioned in Sec.
3.2.2), and Z denotes the output of C. The output of the
distribution controller is expressed as

Z = C(X). (5)
Besides, we follow [4], [6] to upsample Z with interpolation,
aiming to improve the smoothness at the image scale. An
overview of our framework is provided in Fig.3.

We investigate the principles for the controller design.
Principle 1. The hyper-parameters in C can be easily set

without prior knowledge of classifiers and datasets.
Principle 2. The output relevance scores of C approach a

right-skewed distribution over (0,1) for each decision.
Principle 3. The mapping function from the distribution

controller’s input X to its output Z is monotonic.
For the illustration of the last two principles, two ex-

amples are shown in Fig.2 and Fig.4, respectively. In the
first figure, by modifying the expected distributions of the
outputs of C from the right-skewed distribution to the left-
skewed distribution, the differentiation of the saliency map
is remarkably reduced. Besides, the proportions of pixels
highlighted with high scores are positively correlated with
the area at the right part of pre-configured distributions. It is
worthwhile noting that the quantitative observation in [2],
[7] shows that the occlusion of 5% (25%) pixels in natural
images can bring nearly 50% (90%) drop in classification
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Fig. 5. The PDFs with the different settings of hyper-parameters.

confidence, which again demonstrates the effectiveness of
the right-skewed distributions. In the second figure, a non-
monotonic transform g(x)=x2 is used in C, making the
scores deviate from the expected meaning. That is, a higher
score implies a larger contribution. In contrast, a monotonic
mapping enables to enhance the differentiation of a saliency
map without changing the ranking of its relevance scores.

3.4 Controller Design
Following the above principles, we introduce a simple de-
sign of the controller. Since the sum of two independent
random variables is more normal (Gaussian) than the origi-
nal variables [12], [13], we first assume that the distribution
of the inputs of the controller C (the outputs of the generator
G) is nearly normal for convenience. Later we show that the
proposed controller built upon this assumption also guides
other distributions towards the right-skewed ones.

3.4.1 From the Normal to the Standard Normal
To obtain the desired distributions, we first introduce in-
stance normalization [26] to guide the normal distribution
towards the standard normal distribution. The goal of this
step is to shift the scores around the opposite sides of zero.

Specifically, let xij∈X be the input entry at the location
(i, j), and yij∈Y denotes the expected variable following
a standard normal distribution. The mapping can be ex-
pressed as

yij = ω(x)ij = (xij − E[xij ])/(
√
V[xij ]), (6)

where the expectation E[·] and variance V[·] are computed
over the entries of each X.

3.4.2 From the Standard Normal to the Right-skewed
Now we guide the above scores towards right-skewed
distributions monotonically. To do this, we introduce a
customized transformation function with easy-to-set hyper-
parameters.

To produce the relevance scores with a right tail in
(0,1), we first transform the normal distribution towards a
uniform distribution based on sigmoid functions and then

change the skewness of the distribution based on power
functions. An illustrative example is shown in the bottom-
left in Fig.3. Specifically, the output zij of C is obtained as

zij = ϕ(yij) = (sigmoid(η · yij))h = (
1

1 + e−η·yij
)
h

(7)

where η aims to guide the new scores approach the uniform
distribution [27], and h determines the skewness of the final
distribution.

In particular, the hyper-parameters η and h can be easily
set according to their effects on the transformed probability
density function (PDF) p(z). To do this, we introduce the
probability density transformation [9] and obtain p(z) as

p(z) =
1√

2πhη
· 1

z(1− z1/h)
· e−

(ln(z(−1/h)−1))
2

2η2 , (8)

The detailed proof can be found in Appendix A.
Analysis. Now we set the hyper-parameters based on

their effects on the intuitive geometry of p(z), which corre-
sponds to the distribution of relevance scores.

Firstly, we fix h=1 and observe the effect of η. The
corresponding PDFs are displayed in Fig.5(a). By changing
η within (0.5,2.5), p(z) remains its skewness and changes
from the concave to the convex for z∈(0,1). In particular,
η=1.5 approximately leads p(z) to an uniform distribution.
Considering 1.5≈0.9

√
π, it is consistent to the sigmoid ap-

proximation of the cumulative probabilities of the standard
normal distribution [27].

Secondly, we set η={0.5,1.5,2.5} and observe the effect of
h. Three PDF figures are displayed in Figs.5(b-d), where all
p(z)s are able to obtain right-skewed distributions under a
large h. However, the geometries of these p(z)s are signifi-
cantly different. Fig.5(b) shows that p(z) with η=0.5 obtains
extremely low probabilities for z∈(0.5,1). Once a relevance
score larger than 0.5 appears and becomes an outlier, this
range for highlighting strong supporting features is likely
to be wasted. Fig.5(c) shows that p(z) with η=2.5 continues
the undesired convexity and leads to more high scores than
middle scores. p(z) with η=1.5 can lead to a clear tail over
the range of (0,1), as shown in Fig.5(d).

Above all, η=1.5 enables the sigmoid approximation of
the cumulative probability for the standard normal distribu-
tion and leads it to a uniform distribution [27]. With h=2.5,
we can further obtain the scores under the right-skewed
distribution with a clear tail over (0,1). Note that other
transformations with monotonicity can also be considered.

3.4.3 Effects on Other Distributions.
Now we relax the normal distribution on X and analyze the
effects of the above controller (η=1.5 and h=2.5) on other
typical distributions, including uniform distributions, the
mixtures of normal distributions, and skew normal distribu-
tions. For simplicity, we only show the results based on the
synthetic data and leave the detailed analysis in Appendix
B. The original distributions (the 1st row) and their trans-
formed distributions (the 2nd row) are displayed in Fig.6.
As we can see, although the controller may not transform
them into the right-skewed distributions completely, it still
shifts a majority of relevance scores towards lower values
and remains a minority of the scores at high values, which
makes the scores away from the left-skewed distributions.
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Fig. 6. The effects of the controller on the synthetic data with different
distributions. The 1st and the 2nd rows show original distributions and
their transformed distributions, respectively. For a quantitative compari-
son, we also list their Pearson’s Coefficients of Skewness (CoS) [5].

From a quantitative perspective, we also calculate their
Pearson’s Coefficients of Skewness (CoS) [5] for comparison.
Specifically, if skewness is positive (negative), the relevance
scores are right- (left-) skewed, meaning that the right (left)
tail of the distribution is longer than the left (right). As we
observe, our controller consistently increases the values of
the skewness for the above typical distributions.

3.5 Estimator Optimization

This section pays attention to the optimization of the above
differentiated relevance estimator DRE. Denote `class as the
classification loss used for training DNNs, such as the com-
monly used cross-entropy loss. Considering the explanation
is already guided to be differentiated, DRE can be directly
optimized without the non-trivial hyper-parameter tuning:

argminG`class(f(ψ(I,M)), t), where M = upsample(C(X)).
(9)

In particular, Eq.9 enables us to improve the faithfulness
of explanations, since it is simplified to find the region
that maximizes the target probability under the expected
distribution. It is also valuable to train the classifier and the
relevance estimator at the same time. As this paper focuses
on post hoc explanations, we leave it for our future work.

4 EXPERIMENTS

This section investigates the performance of DRE. We first
evaluate the faithfulness and the explainability based on
object recognition and scene recognition tasks. Then, we
introduce simple tricks to further improve the performance.
Finally, we perform targeted ablation studies to empirically
demonstrate the effectiveness of the proposed innovations
and discuss the results for misclassifications.

4.1 Setup

To demonstrate the broad applicability, we apply the pro-
posed DRE to 3 types of CNNs, including ResNet50 [11],
VGG19 [21], and GoogleNet [25]. The following 9 methods
are used for comparison: (1) Mask Generator (MGnet) [4],
(2) Meaningful Perturbation (MPert) [8], (3) Grad CAM

TABLE 2
Characteristics of compared methods. The easy-to-set
hyper-parameters are not regraded as sensitive ones.

number of sensitive
hyper-parameters

number of
iterations per explanation

DRE - 1
MGnet 3 1
MPert 2 300
FInv 3 80
XPert - 300
GCAM - 1
GCAM++ - 1
VGrad - 1
SMGrad 1 50
ITGrad - 200

(GCAM) [19], (4) Grad CAM++ (GCAM++) [2], (5) Feature
Inversion (FInv) [6], (6) Extreme Perturbation (XPert) [7],
(7) Vanilla Gradient (VGrad) [20], (8) Smoothness Gradient
(SMGrad) [22], (9) Integrated Gradient (ITGrad) [24]. Of
note, most of them require a large number of forward-
and-backward iterations to build each mask and involve
sensitive hyper-parameters in their objective functions. A
summary is shown in Tab.2. We do not regard easy-to-set
hyper-parameters as sensitive ones, such as the number
of iterations2 in MPert. We empirically tune the sensitive
hyper-parameters around their suggested values.

Implementation. For each of the above CNNs, we divide
its convolutional layers into a few groups based on the
resolutions of their outputs. We then introduce the three
bottleneck cells at the intermediate positions to get the
raw feature maps. We use varying channel numbers for
different CNNs, aiming to propagate sufficient information
between the cells while keeping efficiency. Specifically, for
ResNet50 which consists of the intermediate layers with
{256,512,1024} channels, we introduce one quarter channels
for the high-to-low-resolution cells, namely {64,128,256}; for
VGG19 and GoogleNet that contain the intermediate layers
with {128,256,512} and {192,480,832} channels, we half
the channel numbers for the corresponding cells, namely
{64,128,256} and {96,240,416}, respectively. We use a two-
stage scheme to train the relevance estimator. We first train
class-related spatial filters based on the sampled images
from the training set and then optimize other parts of the
relevance estimator for 10 epochs. Of note, no ground truth
is introduced, and only the outputs of the classifiers are
utilized. We set the batch size to 64 and use Adam with the
initialized learning rate of 10−2. We apply the step decay
and reduce the learning rate by half every three epochs.
During the second stage, 50% background images are set
to the Gaussian blurred version of raw images with the
variance of 10, and the remaining ones are set to random
color images with the addition of Gaussian noise. For a fair
comparison, all perturbation-based methods apply the same
strategy for adding perturbations.

Quantitative metrics. The faithfulness and the explain-
ability of saliency maps are supposed to be evaluated based
on the relevance scores of all pixels. Here we introduce two
generalized metrics based on the ranking of pixels.

2. A larger iteration number empirically brings in better performance.
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TABLE 3
Ranking-based quantitative evaluation on faithfulnessMF .

ImageNet Birds-200-2011
ResNet50 VGG19 GoogleNet MEAN ResNet50 VGG19 GoogleNet MEAN

DRE 77.13 76.75 69.24 74.37 84.62 85.25 82.13 84.00
MGnet 56.61 60.09 50.57 55.75 64.97 75.90 75.32 72.06
MPert 72.40 73.92 64.00 70.10 76.08 82.31 75.09 77.83
FInv 66.73 67.31 61.50 65.18 75.14 78.53 78.52 77.40
XPert 62.07 67.55 52.98 60.87 76.90 80.82 75.84 77.85
GCAM 70.13 64.56 67.84 67.51 77.67 80.49 79.43 79.20
GCAM++ 68.34 69.96 62.51 66.94 78.42 79.75 78.34 78.84
VGrad 18.80 13.57 15.43 15.93 12.23 11.51 10.12 11.29
SMGrad 29.38 35.47 40.26 35.03 46.97 48.80 56.58 50.78
ITGrad 16.47 20.35 43.37 26.73 20.71 22.03 35.19 25.98

TABLE 4
Ranking-based quantitative evaluation on explainabilityME .

ImageNet
ResNet50 VGG19 GoogleNet MEAN

DRE 83.02 83.91 81.73 82.89
MGnet 82.62 83.53 81.87 82.67
MPert 75.74 72.50 70.98 73.07
FInv 75.20 72.63 75.35 74.39
XPert 78.73 80.92 71.26 76.97
GCAM 79.28 74.93 82.15 78.79
GCAM++ 82.86 84.46 83.20 83.51
VGrad 66.23 70.90 66.78 67.97
SMGrad 73.17 74.03 70.31 72.50
ITGrad 66.92 66.74 63.25 65.64

Faithfulness. The traditional metrics use heuristic seg-
mentation strategies on the scores of each mask and cal-
culate the probability of the target class based on a fixed
ratio of clean high-score pixels, which reduces the fairness
for comparing different methods [8]. We instead utilize the
ranking of pixels and perform the evaluation based on
the target class probabilities corresponding to a number of
ratios. Suppose ∆ is the interval for the ratio of clean high-
score pixels, and Si denotes the set of locations with the top
i×∆ highest scores. For each image, we first estimate the
probability of its fully blurred version as Q0=ft(ψ(I,0)).
Then we replace its blurred pixels within Si by the corre-
sponding i×∆ pixels in the clean image and estimate the
probability of the new image as Qi. We repeat this step
by increasing the ratio of clean pixels, until reaching the
fully clean image and obtaining Qm=ft(ψ(I,1)) (m×∆=1).
With the intervals of ∆, the area under the curve (AUC)
of the probability vs. the ratio is used as the measure of
faithfulness:

MF = 100%×
∑
i

Qi ·∆, i = 1, 2, . . . ,m. (10)

Explainability. The explanation with high explainability
should provide clear reasons that are easy to understand.
Since it is time-consuming for users to detect the locations
of all meaningful features (including bias features), we gen-
erally use bounding boxes as an alternative for its evaluation
[6], [8]. For example, weakly-supervised object localization
evaluates masks by calculating the intersection over the
union between their binary variants and bounding boxes.
Nevertheless, it faces the issue of choosing thresholds. Thus,
we introduce a new metric by regarding the relevance scores

as the results of retrieval tasks [1]. Specifically, let Si be the
set of locations that obtain the top i highest relevance scores,
and Sb indicates the set of locations within the bounding
box. We calculate the precision Pi=

|Sb∩Si|
|Si| as the fraction

of these i locations retrieved within bounding boxes, and
the recall Ri=

|Sb∩Si|
|Sb| as the fraction of the within-bounding-

box locations that are retrieved within these i locations.
By computing Pi and Ri for all Sis, we can evaluate the
explainability by the AUC of the precision vs. the recall as

ME = 100%×
∑
i

Pi · (Ri −Ri−1). (11)

4.2 On Object Recognition

This section investigates the effectiveness of the proposed
method in object recognition tasks, which is the primary
motivation of introducing right-skewed distributions. We
use two real-world image datasets ImageNet and Birds-200-
2011 for evaluation, where the latter is a fine-grained dataset
of 200 bird species. In particular, we load pre-trained CNNs
from torchvision for ImageNet and train ResNet50, VGG19,
and GoogleNet to build the classifiers for Birds-200-2011.

4.2.1 Ranking-based Quantitative Evaluation

On the faithfulness withMF . To evaluate the faithfulness
of the proposed relevance estimator, we calculate the mean
of the metricMF based on 10,000 and 2,000 sampled images
for ImageNet and Birds-200-2011, respectively. We set ∆= 1

32
as the interval. Besides, we add a smoothed mask over
the original one with a small weight. We introduce min-
max normalization onMFs of all methods for each image,
balancing the effects of different images.

The results of the average MFs are displayed in Tab.3,
where the following observations can be obtained. Firstly,
VGrad, SMGrad, and ITGrad are generally worse than the
others with a large gap. It is understandable that, these
methods search sensitive pixels based on the gradients, and
the pixels with high scores will be discretely distributed
in each image. As a result, it becomes harder for them to
gather sufficient supporting information in a local receptive
field and recover a high class probability. Secondly, GCAM
obtains comparable performance to GCAM++ on average,
and MPert that directly optimizes masks in a high resolution
also brings satisfying faithfulness. Thirdly, DRE outperforms
all the other methods and enjoys much better performance
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Fig. 7. The saliency maps of different explanation methods for the CNNs trained on ImageNet, in which these sampled images obtain correct
classifications. We also display the heatmap of their normalizedMF values.
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Fig. 8. The saliency maps of different explanation methods for the CNNs trained on Birds-200-2011, in which these sampled images obtain correct
classifications. We also display the heatmap of their normalizedMF values.
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Fig. 9. The saliency maps of different explanation methods for the ResNet50 trained on Places365, in which these sampled images obtain correct
classifications. We also display the heatmap of their normalizedMF values.

than MGnet. Since the two methods apply the same archi-
tectures for their mask generators, the results demonstrate
that guiding the relevance scores towards right-skewed
distributions improves the ranking of supporting features.

On the explainability with ME . To reveal the explain-
ability, we introduceME by evaluating the performance of
object localization. For this, we resize and crop bounding
boxes to the size of 224×224, leading to the same size of test
images. The experiments are performed on 10,000 validation
images of ImageNet with bounding box annotations.

The results of average MEs are listed in Tab.4, where
we obtain the following observations. Firstly, the last three
gradient-based methods generally perform worse than the
others. The possible reason is that, gradients are insensi-
tive to the smooth supporting regions, which makes these
regions ignored and harms the ranking of pixels. Secondly,
GCAM++ obtains better performance than GCAM and the
other methods. Understandably, the former is designed to
detect multiple objects in the image and assign them high
relevance scores. Finally, by replacing all constraints with
a simple distribution controller, DRE outperforms MGnet
with a small gap, and both of them enjoy better performance
than most other methods. The reason is that, benefiting from
the training with large-scale images, they tend to generate
high relevance scores for the supporting features that are
robust to the target class. If the bias features do not play the
main role in the classification, the corresponding supporting
regions prefer the locations inside the objects.

To sum up, DRE obtains comparable or even better ex-
plainability to others but achieves much higher faithfulness.
Therefore, although we are not able to analyze the effects
of bias features without more human intervention, the syn-
thetic results still demonstrate its effectiveness empirically.

4.2.2 Visualization-based Qualitative Comparison
Below we visually compare different explanation methods
based on their obtained saliency maps. The red and blue col-
ors denote the high and low scores, respectively. We sample

images from ImageNet and Birds-200-2011, and show their
results in Fig.7 and Fig.8. In particular, we also display their
normalized MF values via a heatmap, in which the color
of each rectangle represents the faithfulness of the saliency
map at the corresponding location.

From these results, we have the following observations.
Firstly, the gradient-based methods bring more low rele-
vance scores for the pixels insides the objects and high
relevance scores for the pixels outside the objects. Consid-
ering their lower faithfulness, this observation implies that
the supporting pixels generally locate inside the objects as
expected, demonstrating the effectiveness of estimating the
explainability with bounding boxes. Secondly, since GCAM
and GCAM++ only take high-level feature maps into ac-
count, they fail to provide a detailed estimation of relevance
scores. This issue becomes more obvious for fine-grained
images, where they can only detect the locations of the
objects. Besides, GCAM and GCAM++ may still miss a
majority of supporting pixels of objects, such as the 4th row
in Fig.8. Thirdly, MGnet is case-sensitive, which will either
detect all supporting pixels or a few most important ones.
Although we can carefully adjust the hyper-parameters for
each kind of datasets and networks, the mask generators
need to be re-trained for each setting, reducing its prac-
ticability significantly. Similarly, MPert and FInv contain
sensitive hyper-parameters that need to be tuned for each
instance individually. Fourthly, MGnet assigns the detected
pixels similar relevance scores and loses the differentiation.
We have attempted to perform the controller on its obtained
masks in a post hoc manner, which still fails to build
differentiated masks. The reason is that its relevance scores
are already stacked at 0 and 1. Finally, DRE not only obtains
high scores for the supporting pixels inside the objects and
brings higher faithfulness, but also displays the different
degrees of importance of these pixels, e.g., the supporting
pixels within the animals’ heads are more important than
those within the other parts.
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Fig. 10. The illustrative examples for Sec. 4.4, which are built upon ResNet50 with ImageNet. (a) The effects of post hoc tuning tricks on saliency
maps. (b) The effects of different pre-configured distributions (the 1st column) on saliency maps (the 2nd-7th columns). Each row of masks
corresponds to a pre-configured distribution. (c) The effects of the ad hoc constraints on DRE and MGnet [4].

TABLE 5
Ranking-based quantitative evaluation on faithfulnessMF .

Places365 (ResNet50)
DRE MGnet MPert FInv XPert
70.45 53.85 64.61 64.84 55.71

GCAM GCAM++ VGrad SMGrad ITGrad
68.60 60.89 7.73 38.07 45.20

4.3 On Scene Recognition

Now we introduce the explanation methods for the CNNs
trained on scene images. Specifically, we first train ResNet50
on Places365 and then regard it as the black-box classifier.
We list their faithfulness metricMF in Tab.5 and show some
of their obtained saliency maps in Fig.9.

From these results, we obtain the following observations.
Firstly, comparing to the masks for object images, the high
scores of DRE and MGnet for scene images may locate at
more than one region of an image. Understandably, scenes
are composed of objects, and the conception of scenes is
more comprehensive than that of objects. Secondly, although
the masks of DRE tend to be visually noisy compared
with GCAM and GCAM++, they still detect the important
regions clearly and lead to high faithfulness. From the
quantitative perspective, we also observe that DRE obtains
higher faithfulness than all the other methods.

4.4 Discussion

In this section, we first introduce some simple tricks to
further improve the proposed method. After that, since
the right-skewed distributions are used and the ad hoc
constraints are ignored, their impacts are investigated via

targeted ablation studies. Finally, we discuss the saliency
maps corresponding to misclassifications.

4.4.1 On Improvements with Simple Tricks
Although DRE has achieved stratifying performance with-
out the non-trivial hyper-parameter tuning, constraining the
scores of various images towards the same pre-configured
distribution may lead to low but redundant scores on back-
grounds, especially when the supporting pixels only take a
tiny part of all pixels. Thus, we present two simple tricks
to further improve the differentiation of DRE, including
one self-based and one MGnet-based. For convenience, only
ResNet50 is used as the classifier.

DRE+ (Self-based). This trick improves DRE based on
the saliency map itself. Given an estimated mask with the
relevance scores of pixels, we first follow the process in the
faithfulness metric to iteratively calculate the probability
Qi based on the top i×∆ pixels. Next, we modify these
probabilities with Qi=maxQj≤i to obtain the monotonicity.
For efficiency, we only calculate the probability Qi at the
i×∆-th pixels and infer the probabilities at the remaining
pixels with linear interpolation. Since the k-th pixel is not
likely to be the supporting one if Qk already approaches
the maximum Qmax (maxkQk), we perform the post hoc
tuning on the relevance scores as M ′k=Mk×Wk, where
Wk=(Qmax−Qk), and Mk is the original relevance score.

DRE+ (MGnet-based). It is natural to cooperate the
proposed DRE with MGnet [4], since the latter can obtain
clearer boundaries between objects and backgrounds. Thus,
we introduce another mask as M′ = MDRE �MMGnet. For
simplicity, we perform the post hoc combination without
training them together with the shared mask generator.

The obtained masks showing the effects of DRE+ (Self-
based) and DRE+ (MGnet-based) are displayed in Fig.10(a),
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Fig. 11. The examples of the masks of different methods on ImageNet (1st-2nd rows), Birds-200-2011 (3rd-4th rows), and Places365 (5th-6th rows),
where ResNet50 is used as the classifier. Of note, labels in black indicate the ground truths, and those in blue denote the predicted classes.

where the masks of original DRE and MGnet are also pro-
vided. From the results, the following observations can be
made. Firstly, compared with MGnet, DRE without post hoc
tuning sometimes sacrifices the boundaries between objects
and backgrounds. Secondly, by combing the masks of DRE
and MGnet, DRE+ (MGnet-based) improves the boundaries
while keeping the differentiation to some degree. Thirdly,
owing to the better ranking of the scores over all pixels
(demonstrated byMF in Sec. 4.2.1), DRE+ (Self-based) can
effectively utilize DRE’s masks to reduce the noise around
the boundaries and highlight the supporting pixels with
differentiated scores. Since it does not introduce extra hyper-
parameters, DRE+ (Self-based) is more practical. We further
introduce flexible variants of self-based tuning in Appendix
C, which could be more beneficial to DRE.

4.4.2 On Distribution Controller: the Effects of Distributions.
To show the effectiveness of the proposed controller, we
first change the setting of its hyper-parameters, which leads
the input with normal distributions to different types of
pre-configured distributions. Specifically, we set (η,h) to
(0.5,2.5), (1.5,2.5), (1.5,1.5), (2.5,2.5), (1.5,0.5) and the 5 cor-
responding distributions are shown in the 1st column in
Fig.10(b). For convenience, we only use ResNet50 as the
classifier and train the relevance estimators for 3 epochs. The
examples of the corresponding saliency maps are shown in
the following columns in the same figure.

As we can see, although it is hard to expect that all
masks obtain relevance scores with the same distributions as
the pre-configured ones, the controllers consistently enforce
them towards these distributions. In general, the estimators
built upon the right-skewed controllers obtain the differen-
tiated masks, and the estimators built upon the left-skewed
controllers reduce the explainability significantly.

4.4.3 On Optimization: the Effects of Ad Hoc Constraints.
To evaluate the impact of our simplified objective function,
we introduce an ablation study to analyze how the ad hoc

constraints affect the proposed relevance estimator. Follow-
ing the formulation of MGnet with Eq.2, we add them
back to Eq.9 and train the estimator using the following
hyper-parameter settings: (1) carefully-tuned λs, (2) λav=0,
(3) λav=λbg=0, (4) λav=λtv=0, (5) λav=λbg=λtv=0. For com-
parison, an ablation study is also performed on MGnet with
the setting of (1) carefully-tuned λs, (2) λav=0, (3) λbg=0, (4)
λtv=0, (5) λbg=λtv=0. For efficiency, we only use ResNet50
as the black-box classifier and train the corresponding es-
timators for 3 epochs. The masks corresponding to various
settings are displayed in Fig.10(c).

From the results, the following observations can be
obtained. Firstly, comparing the 6th column with the 2nd
column, we can see that by adding all the constraints
back, the masks of DRE can be improved to some degree.
However, we also observe from the 3rd column that λav=0
has few effects on our relevance estimator. Besides, λbg=0
will increase the noise around the boundaries owing to the
smoothness constraint (in the 4th column), and λtv=0 causes
the holes in the masks (in the 5th column). Nevertheless,
by further removing these two terms, these shortcomings
can be alleviated, and the final masks of DRE remain the
satisfying quality (in the 6th column). Secondly, all the
constraints in MGnet, however, result in remarkable im-
pacts on its masks, especially λav=0 (in the 8th column).
Although λbg=0 can relax the masks and improve their
differentiation, it would ignore a part of supporting features,
such as the 4th-5th rows in the 9th column. Besides, it
enhances the sensitiveness of λav. For example, while λbg
is carefully set, λav varying within (2,12) consistently leads
to acceptable results for ResNet50. Once λbg=0, the quality
of masks is acceptable only for λav∈(2,4). The reason is that,
minimizing ft(ψ(I,1-M)) can avoid the supporting pixels
being regarded as backgrounds. Once this term is removed,
the size of the supporting pixels is totally controlled by
the hyper-parameter λav. When it is slightly larger, a part
of supporting pixels will be regarded as backgrounds. In
short, benefiting from the distribution controllers, DRE can

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 10,2021 at 02:28:15 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3049784, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

be insensitive to the ad hoc constraints.

4.4.4 On Misclassifications

As the objective of explanation methods aims to explain all
decisions, the explanations on misclassifications also need
to be investigated. We thus show the masks of different
methods on misclassified images. We take ResNet50 as an
example and display the masks of the images from different
datasets in Fig.11. As we can see, most explanation methods
still target the typical parts of objects or the representative
objects of scenes. It implies that different classes may share
the same visual features, which leads to misclassifications.
For example, the object images in the 1st-2nd rows share the
similar shapes with the predicted classes, the bird images
in the 3rd-4th rows share the similar colors with the wrong
classes, and the scene images in the 5th-6th rows focus on
the similar objects to the predicted classes. This observation
is in line with the finding in [30], where different classes of
scene images share the same object-level features.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce a simple but effective relevance
estimator called DRE to provide differentiated explanations
for the decisions of DNNs. Specifically, we present the
concept of distribution controllers on relevance scores and
integrate it with a trainable mask generator to directly
guide the relevance scores. By analyzing the effects of the
skewness of the pre-configured distributions, we develop
a simple distribution controller with the right-skewed dis-
tribution. We optimize DRE under the classification loss
without non-trivial hyper-parameter tuning, which also im-
proves the faithfulness of explanations. For each of the
above innovations, we perform the targeted experiments
to investigate their effectiveness. Finally, we compare DRE
with state-of-the-art methods, and the experimental results
demonstrate that DRE significantly improves faithfulness
with high explainability.

There are some aspects needing further investigations.
Firstly, although this paper provides an intuitive compar-
ison of the transformed distributions for setting hyper-
parameters, a quantitative analysis of the ratio of features
at the tail is preferable. Secondly, since self-based tuning
can improve saliency maps, it is worth incorporating it into
the original models for an end-to-end optimization. Thirdly,
benefiting from the simpleness of using distribution con-
trollers, explaining the decisions of graph neural networks
based on the controllers becomes another possible direction.

APPENDIX A
THE PROOF OF EQ.8 IN SEC.3.4.2

Let p(y) denote the probability density function (PDF) of the
variable y, and the transformed variable z is calculated as
z = ϕ(y). According to the probability density transforma-
tion [9], the transformed PDF p(z) can be obtained as

p(z) = py(ϕ−1y (z)) · |
∂ϕ−1y (z)

∂z
|, (12)

Fig. 12. The data flow inside the distribution controller with variables X,
Y, and Z.

where ϕ−1y (z) denotes the inverse function of z on y, and
py(ϕ−1y (z)) means substituting the above result into the PDF
of y. Based on Eq.7 in the paper, we obtain

y = ϕ−1y (z) = −1

η
ln(z−1/h − 1), (13)

where (z−1/h-1)>0. With simple derivations, we obtain:

|
∂ϕ−1y (z)

∂z
| = 1

ηh
· 1

z(1− z(1/h))
. (14)

In addition, p(y) follows the standard normal distribution,
which can be formulated as

p(y) =
1√
2π

e−
y2

2 . (15)

By substituting Eq.13 into Eq.15, and then substituting
Eqs.14-15 into Eq.12, we finally obtain

p(z) =
1√

2πhη
· 1

z(1− z1/h)
· e−

(ln(z(−1/h)−1))
2

2η2 , (16)

which completes the proof.

APPENDIX B
THE CONTROLLER ON OTHER TYPICAL DISTRIBU-
TIONS IN SEC.3.4.3

Now we consider the effects of the distribution controller
beyond normal distributions. Of note, x∈X denotes the in-
put of the controller (output of the generator), y∈Y denotes
the intermediate variable after instance normalization, and
z∈Z denotes the output of the distribution controller. For
convenience, we show the illustrative positions of these
variables in Fig.12.

Recall that we have y=ω(x) via Eq.6 and z=ϕ(y) via Eq.7.
According to the probability density transformation [9], the
transformed PDFs p(y) and p(z) can be obtained as

p(y) = px(ω−1x (y)) · |∂ω
−1
x (y)

∂y
| (17)

and

p(z) = py(ϕ−1y (z)) · |
∂ϕ−1y (z)

∂z
|, (18)

where ω−1x (y) is the inverse function of y on x, and ϕ−1y (z)
is the inverse function of z on y. In particular, since ω(x) in
Eq.6 denotes the instance normalization, we obtain

x = ω−1x (y) = y
√

V[x] + E[x], |∂ω
−1
x (y)

∂y
| =

√
V[x]. (19)
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Fig. 13. The transformed PDF curve for inputs with uniform distributions.

B.1 On Uniform Distributions

Firstly, we consider the variable x with uniform distribu-
tions, whose PDF can be formulated as

p(x) =


1

b− a
, a < x < b

0 , others.
(20)

For uniform distributions, we can calculate the expectation
E[x] as a+b

2 , and the variance V[x] as (b−a)2
12 . According to

Eq.19, we obtain

x = ω−1x (y) =
b− a
2
√

3
× y +

a+ b

2
(21)

and

|∂ω
−1
x (y)

∂y
| = b− a

2
√

3
. (22)

By substituting Eqs.20-22 into Eq.17, p(y) is obtained as

p(y) =


1

2
√

3
, a <

b− a
2
√

3
× y +

a+ b

2
< b

0 , others,

(23)

which is equal to

p(y) =


1

2
√

3
, −
√

3 < y <
√

3

0 , others.
(24)

Furthermore, by substituting Eqs.13-14 and Eq.24 into Eq.18,
we obtain p(z) as

1

2
√

3ηhz(1− z(1/h))
,−
√

3 < −1

η
ln(z−1/h − 1) <

√
3

0 , others,
(25)

which is equal to
1

2
√

3ηhz(1− z(1/h))
, (e
√
3η + 1)

−h
< z < (e−

√
3η + 1)

−h

0 , others.
(26)

With η=1.5 and h=2.5 in Eq.26, we finally obtain the PDF
curve of p(z), as shown in Fig.13.

From this figure, we observe that p(z) has a clear right
tail over (0,1). Since we aim to obtain right-skewed distri-
butions on the final output z, this observation demonstrates
the effectiveness of our controller for the inputs with uni-
form distributions.

Fig. 14. The transformed PDF curves for inputs with skew normal distri-
butions. The left shows the original distributions, and the right shows the
transformed distributions.

B.2 On Skew Normal Distributions

Below we analyze the effects on skewed distributions. For
simplicity, we focus on the skew normal distribution, which
can be formulated as

p(x) = 2φ(x)Φ(ax), (27)

where φ(x)= 1√
2π

e(−
x2

2 ), Φ(x)=
∫ x
−∞ φ(t)dt= 1

2 [1+erf( x√
2
)]

(erf denotes ”error function”). Similarly, by substituting
Eq.19 and Eq.27 into Eq.17, we can obtain p(y):

2φ(y
√

V[x] + E[x])Φ(a(y
√
V[x] + E[x]))×

√
V[x], (28)

where we have E[x]=
√
2a√

(1+a)π
and V[x]=(1- 2a2

π(1+a2) ) for the

skew normal distributions. By substituting Eqs.13-14 and
Eq.28 into Eq.18, we obtain the transformed PDF p(z):

2φ(ϕ−1y (z)
√
V[x] + E[x])Φ(a(ϕ−1y (z)

√
V[x] + E[x]))

×
√
V[x]× |

∂ϕ−1y (z)

∂z
|,

(29)

where ϕ−1y (z)=− 1
η ln(z−1/h-1) and |∂ϕ

−1
y (z)

∂z |= 1
ηhz(1−z(1/h)) .

We substitute η=1.5 and h=2.5 into Eq.29 to obtain the final
PDF. In particular, we change a from -20 to 20, and display
their corresponding transformed PDF curves in Fig.14.

As we can see, for the different skewness of the original
distributions (the right-skewed distribution with a>0 or
the left-skewed distribution with a<0), their correspond-
ing transformed distributions p(z)s have clear right tails
over (0,1). As before, it demonstrates the effectiveness of
the proposed controller for the inputs with skew normal
distributions.

B.3 On Mixture of Normal Distributions

Now we consider the mixture of normal distributions. Sup-

pose Ψ(x, σi, µi)= 1√
2π

e
− (x−µi)

2

2σ2
i and ri denotes the weight

of the i-th component with
∑
i ri=1. The PDF for x with the

mixture of normal distributions is formulated as

p(x) =
∑
i

riΨ(x, σi, µi). (30)

By substituting Eq.19 and Eq.30 into Eq.17, we obtain

p(y) =
∑
i

riΨ(y
√

V[x] + E[x], σi, µi)
√

V[x]. (31)
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Fig. 15. The transformed PDF curves for inputs with the mixture of normal distributions. The left shows the original distributions, and the right shows
the transformed distributions. Specifically, for these sub-figures, we have (a) µ2 = 2, (b) µ2 = 4, (c) µ2 = 8, (d) µ2 = 16.

In particular, we focus on the mixture of two normal dis-
tributions, where we have E(x)=r1µ1+r2µ2 and V[x]=r1σ2

1+
r2σ

2
2+r1r2(µ1-µ2)2. Similarly, we substitute Eqs.13-14 and

Eq.31 into Eq.18 and obtain p(z) as

∑
i

riΨ(ϕ−1y (z)
√

V[x] +E[x], σi, µi)
√
V[x]|

∂ϕ−1y (z)

∂z
|, (32)

where ϕ−1y (z)=− 1
η ln(z−1/h-1) and |∂ϕ

−1
y (z)

∂z |= 1
ηhz(1−z(1/h)) .

We set η=1.5 and h=2.5 in Eq.32 as before to build the
final transformed PDF. For simplicity, we set σ1=σ2=1 and
µ1=0. We change r1 within {0.1, 0.2, . . . , 0.9} and µ2 within
{2, 4, 8, 16}. The curves of the corresponding transformed
PDFs are displayed in Fig.15. Of note, the mixtures of the
above normal distributions with r1={0, 1} or µ2=0 equal to
single normal distributions.

From this figure, we can obtain the following observa-
tions. Firstly, a large µ2 brings a significant characteristic
of bimodal distributions, namely two distinct peaks, which
increases the difficulty of transformation. For example, with
µ2=16 and r1=0.9, a part of values between (0.2,0.8) will be
wasted due to the extremely low probabilities. However, if
the two distributions are not too far away from each other
(with respect to their variances), we observe that only a mi-
nority of the transformed scores are close to 1, and a majority
of the scores are much lower and different. Thus, although
this figure does not cover all kinds of mixtures of normal
distributions, it still shows the effectiveness of our controller
on the mixtures to some degree. Secondly, small r1s result
in the left tails for the original distributions. Benefiting from
our controller, their transformed distributions are guided
towards the right-skewed ones.

APPENDIX C
THE VARIANTS OF SELF-BASED TUNING

In DRE+ (Self-based), we take advantage of the ranking
of scores and use the accumulated class probabilities to
improve masks. However, its post hoc trick is independent
of the model training. Below we propose potential variants
of the self-based tuning with an end-to-end optimization,
which could probably help the optimization of the proposed
relevance estimator and make it more adaptable. We leave
the experimental investigations as future work.

Note that during the self-based tuning, we first estimate
the extra weight Wk=Qmax-Qk for each pixel, where Qmax

denotes the maximal probability and Qk is the current accu-
mulated probability. Then we combine it with the original
score Mk for the final relevance score in the saliency map,
represented as M ′k=Mk×Wk. More details can be found
in Sec. 4.4.1. Although the variables Wks are untrainable
for a fixed DNN, they keep being updated during the
optimization of Mk. Therefore, we can directly introduce
M′ as the mask in Eq.9 for model training. Compared with
the original version where all Wks are equal to 1, it weakens
the obtained relevance scores, especially the pixels within
the background. Since the number of high scores is limited
for each mask, this variant could enforce the relevance
estimator to take more effort to detect important supporting
pixels while ignoring the role of background, which further
improves the differentiation. The potential issue is that
calculating all Wks for each image can lead to huge time
costs in model training. Therefore, the trade-off between the
performance and the training efficiency built upon the linear
interpolation of Wks needs further investigations. Further
improvement can be made for the generation of Wks. That
is, to avoid the considerable time costs of estimatingWks for
testing images, we can predict them by learning to fit Wks
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of training data. However, it inevitably introduces an extra
hyper-parameter in the objective and requires more effort
for sensitive analysis.
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A Survey on Large-scale Machine Learning
Meng Wang, Senior Member, IEEE, Weijie Fu, Xiangnan He, Shijie Hao, and Xindong Wu, Fellow, IEEE

Abstract—Machine learning can provide deep insights into data, allowing machines to make high-quality predictions and having been
widely used in real-world applications, such as text mining, visual classification, and recommender systems. However, most sophisticated
machine learning approaches suffer from huge time costs when operating on large-scale data. This issue calls for the need of Large-
scale Machine Learning (LML), which aims to learn patterns from big data with comparable performance efficiently. In this paper, we
offer a systematic survey on existing LML methods to provide a blueprint for the future developments of this area. We first divide these
LML methods according to the ways of improving the scalability: 1) model simplification on computational complexities, 2) optimization
approximation on computational efficiency, and 3) computation parallelism on computational capabilities. Then we categorize the
methods in each perspective according to their targeted scenarios and introduce representative methods in line with intrinsic strategies.
Lastly, we analyze their limitations and discuss potential directions as well as open issues that are promising to address in the future.

Index Terms—large-scale machine learning, efficient machine learning, big data analysis, efficiency, survey

F

1 INTRODUCTION

Machine learning endows machines the intelligence to learn
patterns from data, eliminating the need for manually dis-
covering and encoding the patterns. Nevertheless, many ef-
fective machine learning methods face quadratic time com-
plexities with respect to the number of training instances or
model parameters [70]. With the rapidly increasing scale of
data in recent years [207], these machine learning methods
become overwhelmed and difficult to serve for real-world
applications. To exploit the gold mines of big data, Large-
scale Machine Learning (LML) is therefore proposed. It aims
to address the general machine learning tasks on available
computing resources, with a particular focus on dealing
with large-scale data. LML can handle the tasks with nearly
linear (or even lower) time complexities while obtaining
comparable accuracies. Thus, it has become the core of
big data analysis for actionable insights. For example, self-
driving cars such as Waymo and Tesla Autopilot apply
convolutional networks in computer vision to perceive their
surroundings with real-time images [115]; online media and
E-commerce sites such as Netflix and Amazon build efficient
collaborative filtering models from users’ histories to make
product recommendations [18]. All in all, LML has been
playing a vital and indispensable role in our daily lives.

Given the increasing demand for learning from big data,
a systematic survey on this area becomes highly scientific
and practical. Although some surveys have been published
in the area of big data analysis [12], [33], [54], [193], they are
less comprehensive in the following aspects. Firstly, most
of them only concentrate on one perspective of LML and
overlook the complementarity. It limits their values for un-
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derstanding this area and promoting future developments.
For example, [12] focuses on predictive models without
covering the optimization, [33] reviews stochastic optimiza-
tion algorithms while ignoring the parallelization, and [193]
only pays attention to processing systems for big data and
discusses the machine learning methods that the systems
support. Secondly, most surveys either lose the insights
into their reviewed methods or overlook the latest high-
quality literature. For example, [12] lacks discussions on
the computational complexities of the reviewed models, [33]
neglects the optimization algorithms that address the data
with high dimensionality, and [120] limits its investigation
to distributed data analysis in the Hadoop ecosystem.

In this paper, we thoroughly review over 200 papers
on LML from computational perspectives with more in-
depth analysis and discuss future research directions. We
provide practitioners lookup tables to choose predictive
models, optimization algorithms, and processing systems
based on their demands and resources. Besides, we offer
researchers guidance to develop the next generation of LML
more effectively with the insights of current strategies. We
summarize the contributions as follows.

Firstly, we present a comprehensive overview of LML ac-
cording to three computational perspectives. Specifically, it
consists of: 1) model simplification, which reduces computa-
tional complexities by simplifying predictive models; 2) op-
timization approximation, which enhances computational
efficiency by designing better optimization algorithms; and
3) computation parallelism, which improves computational
capabilities by scheduling multiple computing devices.

Secondly, we provide an in-depth analysis of existing
LML methods. To this end, we divide the methods in
each perspective into finer categories according to targeted
scenarios. We analyze their motivations and intrinsic strate-
gies for accelerating the machine learning process. We then
introduce the characteristics of representative achievements.
In addition, we review the hybrid methods that jointly
improve multiple perspectives for synergy effects.

Thirdly, we analyze the limitations of the LML methods
in each perspective and present the potential directions
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based on their extensions. Besides, we discuss some open
issues in related areas for the future development of LML.

The paper is organized as follows. We first present a
general framework of machine learning in Sec.2, followed
by a high-level discussion on its effectiveness and efficiency.
In Sec.3, we comprehensively review state-of-the-art LML
methods and provide in-depth insights into their benefits
and limitations. Lastly, we discuss the future directions to
address the limitations and other promising open issues in
Sec.4, before concluding the paper in Sec.5.

2 FROM EFFECTIVENESS TO EFFICIENCY

In this section, we present three perspectives to quantify the
efficiency based on an acknowledged error decomposition
on effectiveness. Then we provide a brief of LML.

2.1 Overview of Machine Learning

Notations. We consider a general setting of machine learn-
ing tasks: given n instancesX = {x1, . . . ,xn} sampled from
a d-dimension space, and {yi}nL

i=1 indicate to the labels of
the first nL instances (nL ≥ 0) within c distinct classes.
The goal of machine learning is to learn an instance-to-label
mapping model f : x → y from a family of functions F ,
which can handle both existing and future data.
Effectiveness with error decomposition. Let Q(f)n denote
the empirical risk of a machine learning model trained over
n instances, and Q(f) be the corresponding expected risk
where the number of instances is infinite. Then we introduce
the following specific functions obtained under different
settings. Specifically, let f∗=argminfQ(f) be the optimal
function that may not belong to the function family F , and
f∗F=argminf∈FQ(f) be the optimal solution in F . Suppose
fn=argminf∈FQ(f)n is the optimal solution that minimizes
the empirical risk Q(f)n, and f̃n refers to its approximation
obtained by iterative optimization.

Let T (F , n, ρ) be the computational time for an expected
tolerance ρ with Q(f̃n)n−Q(fn)n<ρ. Based on the above
definitions, the excess error E obtained within an allotted
time cost Tmax can be decomposed into three terms [32]:

argminF,n,ρ Eapp + Eest + Eopt, s.t. T (F , n, ρ) ≤ Tmax (1)

where Eapp=E[Q(f∗F )−Q(f∗)] denotes the approximation
error, measuring how closely the functions in F can ap-
proximate the optimal solution beyond F ; Eest=E[Q(fn)−
Q(f∗F )] is the estimation error, which evaluates the effect
of minimizing the empirical risk instead of the expected
risk; Eopt=E[Q(f̃n)−Q(fn)] indicates the optimization error,
which measures the impact of the approximate optimization
on the generalization performance.
Efficiency from three perspectives. Based on a low degree
of reduction of the above decomposition, we show the three
perspectives for improving machine learning efficiency.

Firstly, we focus on the effect of Eapp, which is predefined
by the function family F of predictive models. By tuning
the size of F , we can make a trade-off between Eapp and
the computational complexity. Secondly, we consider the
influence of Eest. According to the probably approximately
correct theory, the required number of instances for opti-
mizing models in a large-size function family can be much

larger [91]. To make use of available data and reduce the es-
timation error Eest, we suppose all n instances are traversed
at least once during optimization. Thus, we ignore Eest
and the factor n. Thirdly, we pay attention to Eopt, which
is affiliated with optimization algorithms and processing
systems. Specifically, the algorithms play a crucial role in
computational efficiency, which attempts to increase the re-
duction in the optimization error per computation unit. The
processing systems determine the computational capacity
based on the hardware for computing and the software for
scheduling. With a powerful system, plenty of iterations in
optimization can be performed within allotted time costs.

Above all, the machine learning efficiency can be im-
proved from three perspectives, including 1) the compu-
tational complexities of predictive models, 2) the compu-
tational efficiency of optimization algorithms, and 3) the
computational capabilities of processing systems.

2.2 Brief of Large-scale Machine Learning

Now we present a brief of LML based on the above analysis.
1) Reduce the computational complexity based on model

simplification. Machine learning models can be optimized
based on matrix operations, which generally take cubic com-
putational complexities for square matrices. Besides, most
non-linear methods require extra quadratic complexities for
estimating the similarity between pairs of instances to for-
mulate their models. If these models are simplified by being
constructed and optimized with smaller or sparser involved
matrices, we can reduce their complexities significantly.

2) Improve the computational efficiency based on opti-
mization approximation. Gradient descent algorithms can-
not always compensate for their huge computations by se-
lecting larger learning rates [33]. Therefore, a more effective
manner is splitting data or parameters into multiple subsets
and then updating models with these small subsets. As
these approximate algorithms can obtain relatively reliable
gradients with fewer computations, the reduction in the
optimization error can be increased per computation unit.

3) Enhance the computational capacity based on com-
putation parallelism. During the procedure of model con-
struction and optimization, a high number of computation-
intensive operations can be performed simultaneously, such
as the calculations that are repeated on different mini-
batches. Built upon parallel processing systems, we can
break up these intensive computations and accomplish them
on multiple computing devices with a shorter runtime.

3 REVIEW ON LARGE-SCALE MACHINE LEARNING

In this section, we review LML in detail. Specifically, we
present the methods in the above three perspectives in
Sec.3.1-Sec.3.3, and discuss their collaboration in Sec.3.4. For
each part, we categorize the related methods according to
targeted scenarios and introduce the methods based on their
intrinsic strategies. We also provide experimental evidence
to demonstrate the effectiveness of these strategies and sum-
marize their pros and cons. For convenience, Fig.1 provides
a coarse-to-fine overview for the structure of this section.
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Fig. 1. The framework of Sec.3, which shows the ways of scaling up machine learning to large-scale machine learning from three perspectives.

TABLE 1
A brief lookup table for LML methods based on Model Simplification.

Categories Strategies Representative Methods

Kernel-based Models sampling-based approximation uniformly sampling [118], [214], incremental sampling [34], [73].
projection-based approximation Gaussian [139], orthonormal transforms [215], ramdom features [134], [161].

Graph-based Models label propagation on sparse graph approximate search [110], [227], [232], division and conquer [45], [197].
optimization with anchor graph single layer [132], [201], [228], hierarchical layers [77], [200].

Deep Models filter decomposition on channels [97], [117], [181], [189], on spatial fields [182], [190], [218].
activation reformulation at hidden layers [44], [128], [137], [149], at the output layer [143], [144].

Tree-based Models relaxation with instance reduction random sampling [76], sparse-based [52], importance-based [112].
relaxation with feature simplification random sampling [36], histogram-based [21], [52], exclusiveness-based [112].

3.1 Model Simplification
Model simplification methods improve machine learning ef-
ficiency from the perspective of computational complexities.
To reformulate predictive models and lower computational
complexities, researchers introduce reliable domain knowl-
edge for a small Eapp, such as the structures or distributions
of instances and the objectives of learning tasks [24]. Accord-
ing to targeted scenarios, the reviewed scalable predictive
models consist of four categories, including kernel-based,
graph-based, deep-learning-based, and tree-based. For con-
venience, a brief overview is provided in Tab.1.

3.1.1 For Kernel-based Models
Kernel methods play a central role in machine learning and
have demonstrated huge success in modeling real-world
data with highly complex, nonlinear distributions [146]. The
key element of these methods is to project instances into
a kernel-induced Hilbert space φ(x), where dot products
between instances can be computed equivalently through
the kernel evaluation as Kij=<φ(xi), φ(xj)>.
Motivation. Given n instances, the computational complexi-
ty of constructing a kernel matrix K∈Rn×n scales asO(n2d).
Supposing all instances are labeled with a label matrix of
Y∈Rn×c (n=nL), most kernel-based methods can be solved
based on matrix inversion as

(K+ σI)
−1

Y, (2)

which requires a computational complexity of O(n3 + n2c).
Examples include the Gaussian process, kernel ridge regres-
sion, and least-square support vector machine [81].

To alleviate the above computational burdens for a large
n, a powerful solution is performing low-rank approxi-
mation based on SPSD sketching models [83] and solving
the matrix inversion with Woodbury matrix identity [94].
Specifically, let S ∈ Rn×m with n ≥ m indicate the sketching
matrix. Take C = KS, and W = STKS. Then CW†CT

becomes a low-rank approximation to K with the rank at
most m. Based on the matrix inversion lemma [94], Eq.2 can
be rewritten into 1

σ [Y − C(σW +CTC)
−1

(CTY)], which
reduces the computational complexity to O(m3+nmc).

For scaling up kernel-based models without hurting the
performance, the choice of S or the efficient construction of
C becomes crucial. Below we introduce two strategies for
low-rank approximation based on sketching matrices.

Sampling-based approximation. With this strategy, S rep-
resents a sparse matrix that contains one nonzero in each
column. A direct method is sampling columns of kernel
matrices at random with replacement [118], [214], which is
equivalent to the Nyström approximation. By assuming that
potential clusters are convex, one can select columns corre-
sponding to kmeans centers with the cost of O(nmdt) [228],
where t is the number of iterations. To weigh the complexity
and the performance, a few incremental sampling methods
are proposed. At each iteration, these methods first random-
ly sample a subset of columns and then pick the column
either with the smallest variance of the similarity matrix
between the sampled columns and the remaining ones or
the lowest sum of squared similarity between selected ones
[34], [73], [229]. In general, the computational complexities
of these methods scale as O(nmp), where p is the size of
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the subset. Besides, the structures of clustered blocks can be
exploited to reduce storage costs [180].
Projection-based approximation. Based on this strategy, S
is a dense matrix, which consists of random linear combi-
nations of all columns of kernel matrices [90]. For example,
one can introduce Gaussian distributions to build a data-
independent random projection [139]. Besides, the sketch
can be improved with orthonormal columns that span u-
niformly random subspaces. To do this, we can randomly
sample and then rescale the rows of a fixed orthonormal
matrix, such as Fourier transform matrices, and Hadamard
matrices [215]. These orthonormal sketches can additionally
speed up the matrix product to O(n2logm), as opposed to
O(n2m) required for the same operation with general dense
sketches [215]. On the other hand, some methods construct
kernel spaces directly by mapping data non-linearly to new
low-dimension subspaces [134], [148], [161].
Discussion based on experimental results. Benefit from
matrix identity lemma on the low-rank approximation, time
costs can be significantly reduced. For example, [210] sped
up the matrix inversion nearly 100+ times without scarify-
ing the accuracy for COREL images. Below we discuss the
choice of the above methods in practical applications.

Firstly, for sampling-based methods, uniform sampling
is the fastest solution. Although its performance is generally
worse than others with a small m, it can be mitigated
with the increase of m [118]. Besides, the effectiveness and
efficiency of incremental sampling are weighed based on q.
However, its time cost could be 50% lower than kmeans,
especially when the selected number of columns was s-
mall [73]. Secondly, for projection-based methods, Gaussian
matrices lead to comparable or better performance than
orthonormal sketches [83], [215]. Thirdly, projection-based
sketches are consistently better than uniformly sampling,
while the latter outperforms naive random features [134],
[214]. Finally, since sampling-based methods only need
to compute the involved similarity, the computation of a
full kernel matrix is avoided. However, if data comes in
streaming with varying distributions, these methods are
no longer suitable [134]. In contrast, random features can
be solved in the primal form through fast linear solvers,
thereby enabling to handle large-scale data with acceptable
performance [161], [186].

3.1.2 For Graph-based Models
Graph-based methods define a graph where the nodes rep-
resent instances in the dataset, and the weighted edges re-
flect their similarity. For classification tasks, their underlying
assumption is label smoothness over the graph [146].
Motivation. Given n instances, a graph is first constructed
to estimate the similarity between all instances, measured as
Wij=RBF(xi, xj). Then graph-based models constrain the
labels of nearby instances to be similar and the predicted
labels towards the ground truths. Let Y be the label matrix
where only nL rows contain nonzero elements. Consequent-
ly, the soft label matrix F can be solved by

F = (I+ αL)
−1

Y, (3)

where L=diag(1TW)-W denotes the graph Laplacian ma-
trix. The computational cost of graph models comes from

two aspects: the graph construction with the cost of O(n2d)
and the matrix inversion with the cost of O(n3). Thus, there
are two types of strategies for improving scalability, includ-
ing label propagation on sparse graphs and optimization
with anchor graphs.

Label propagation on sparse graphs. Unlike kernels, most
graphs prefer the sparse similarity, which has much less
spurious connections between dissimilar points [132]. Thus,
we can conduct iterative label propagation to accelerate
the spread of labels, represented as Ft+1=α(W)Ft+(1-α)Y,
where F0=Y. Let k denote the average nonzero element in
each row of W. Then the number of necessary computations
in each iteration scales as O(nkC), taking up a tiny part of
the original amount O(n2C). As a result, a huge part of the
computational complexity now comes from graph construc-
tion, which can be efficiently solved based on approximate
sparse graph construction.

These graph construction methods introduce a hierar-
chical division on datasets to find the neighbors of each
instance and estimate their similarity, which reduces the cost
to O(nlog(n)d). For example, approximate nearest neighbor
search (ANNS) first builds a structured index with all in-
stances [110] and then searches the approximate neighbors
of each instance on the obtained index, such as hierarchical
trees [200] and hashing tables [199], [227]. To enhance the
quality, we can repeat the above procedure to generate
multiple basic graphs and combine them to yield a high-
quality one [232]. Besides, as sparse graph construction is
much easier than the nearest neighbor search, divide-and-
conquer methods become more popular. These methods first
divide all instances into two or three overlapped subsets and
then unite the sub-graphs constructed from these subsets
multiple times with neighbor propagation [45], [197].

Optimization with anchor graphs. Anchor graphs sample
m instances as anchors and measure the similarity between
all instances and these anchors as Z ∈ Rn×m. Then the label-
s of instances are inferred from these anchors, leading to a
small set of to-be-optimize parameters. They use anchors as
transition nodes to build the similarity between instances for
label smoothness, and their soft label matrix can be obtained
as F=Z(ZTZ+αL̃)−1ZTY, where L̃∈Rm×m is a reduced
Laplacian over anchors. Clearly, the cost of graph con-
struction is reduced to O(nmd) or even O(ndlog(m)) with
ANNS, and the cost of optimization scales as O(nm2+m3).

The original anchor graph models introduce sparse ad-
jacency between instances and anchors [132]. After that,
hierarchical anchor graphs propose to retain sparse simi-
larities over all instances while keeping a small number of
anchors for label inference [200]. In case that the smallest
set of anchors still needs to be large and brings considerable
computations, FLAG developes label optimizers for further
acceleration [77]. Besides, EAGR proposes to perform label
smoothness over anchors with pruned adjacency [201].

Discussion based on experimental results. Now we show
the advantages of the two classes of methods. On the one
hand, label propagation is more efficient than the original
matrix inversion. Without accuracy reduction, it could ob-
tain 10× to 100× acceleration over the matrix inversion [79].
As for approximate graph construction, although hierarchi-
cal trees and hashing tables are easy to be used for ANNS
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[198], they generally ignore the fact that each query must
be one of the instances in the graph construction. Thus,
they put redundancy efforts on giving a good result for
unnecessary future queries. In contrast, divide-and-conquer
methods can obtain higher consistency to the exact graphs
with less time cost, which was demonstrated on both Cal-
tech101, Imagenet, and TinyImage [45]. On the other hand,
although the accuracy of anchor graphs is lightly worse than
sparse graphs [132], they are more potent on handling very
large datasets. The reason is that, once a set of anchors can
be stored in the memory, anchor graphs can be efficiently
constructed with the memory cost ofO(md+nk) rather than
O(nd). For example, with hierarchical anchor graphs, the
classification on 8 million instances could be implemented
on a personal computer within 2 mins [77], [200].

3.1.3 For Deep Models
Deep models introduce layered architectures for data repre-
sentation [66]. Instead of fully-connected networks (FCNs)
where any pair of input features in each grid-like data
are relevant, convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) utilize the structures of
data by using small-size filters on local receptive fields [117].
Motivation. Take CNN as an example, where each layer of
convolution kernels can be viewed as a 4D tensor. Consider
input feature maps with the spatial size of dI × dI and the
channel number of mI . A standard convolutional layer on
the input can be parameterized by convolution kernels with
the size of dK × dK × mI × mO, where dK is the spatial
dimension of the square kernel and mO is the number of
output channels. Suppose the stride equals 1. The computa-
tional complexity of this convolutional layer becomes

dI × dI × dK × dK ×mI ×mO. (4)

Generally, deep models involve a large number of hidden
layers. Although the sizes of filters are much smaller than
the sizes of input features, CNNs still contain millions of
parameters [117], and the convolutions contribute to the
bulk of most computations. Besides, deep models contain
two types of bounded activation functions, including those
used in hidden layers for feature extraction, and the ones
used at output layers for probability prediction. The former
type is used for all neurons, and the latter type involves
normalization operations. When handling big models or a
large number of output neurons, e.g., NLP tasks, both can
lead to huge computations during back-propagation [141].

To address these issues, we introduce the filter decompo-
sition for simplifying convolution layers and improving the
overall speedup. After that, we review efficient activation
functions where gradients can be easily estimated.
Filter decomposition. Filter decomposition is derived by the
intuition that there is a significant amount of redundancy
in 4D tensors. Thus, some methods reduce computations
by gathering information from different channels hierarchi-
cally. For example, Alexnet develops group convolutions to
avoid the computations between two groups of channels
[117]. Mobilenet introduces separable depthwise convolu-
tions [97], which factorize the filters into purely spatial
convolutions followed by a pointwise convolution along
with the depth variable [181], leading to 70% reduction

of parameters. Inception v1 in turn first implements the
dimensionality reduction on the channels of input features
[189], followed by the filters with the original receptive
fields. After that, Shufflenet generalizes group convolutions
and depthwise convolutions based on the channel shuffle to
further reduce the redundancy [231].

One the other hand, some methods reduce the computa-
tions based on the hierarchical information integration over
the spatial side. For example, VGG replaces one layer of
large-size filters with the two layers of smaller-size filters
[182], reducing nearly 28% computations. Besides, Inception
v3 introduces asymmetric convolutions that decompose the
convolution with 3×3 filters into two cascaded ones with
the spatial dimensions of 1×3 and 3×1 [190], and nearly
33% parameters can be saved. Dilated convolutions further
support the exponential expansion of receptive fields with-
out the loss of resolution [218]. It shows that a 7×7 receptive
field could be explored by two dilated convolutions with
3×3 parameters, reducing 80% computations.

Activation reformulation. The bounded activation func-
tions such as sigmoid and tanh bring expensive exponen-
tial operations at each neuron. Besides, both of them face
vanishing gradient problems. To address these issues, ReLU
releases the bound by simply picking the outputs as max(0,
xinput) [149]. Since too many activations being below zero
will make ReLU neurons inactive, leaklyReLU additionally
introduces small gradients over the negative domain [137].
Besides, to improve the training stability by constraining the
outputs of activations, a few hard bounded functions upon
ReLU were developed, such as bounded ReLU and bounded
leakyReLU [128]. Moreover, [44] proposes to replace all the
multiplications with adds to reduce the computations.

For probability prediction, the implementation of soft-
max needs to compute a normalization factor based on all
output neurons that could be in millions or billions. To
reduce the computations, hierarchical softmax reorganizes
output probabilities based on a binary tree. Specifically,
each parent node divides the own probability to its children
nodes, and each leaf corresponds to a probabilistic output
[144]. When an input-output pair is available, one can only
maximize the probability of the path in the binary tree,
which reduces the computational complexity logarithmi-
cally. When Huffman coding is adopted for an optimal
hierarchy, the speedup can be further enhanced [143].

Discussion based on experimental results. Gradient de-
scent is widely used for training various networks. Thus,
filter decomposition successfully reduces the number of
computations by lowering the scale of parameters. For ex-
ample, Inception v1 was able to become 2× to 3× faster
than those without dimensionality reduction on channels
[189]. Mobilenet with depthwise convolutions could build a
32× smaller and 27× less compute-intensive networks than
VGG16, which still obtained comparable accuracies [97].
Benefit from spatial decomposition, Inception v3 used at
least 5× fewer parameters and achieved 6× cheaper compu-
tationally [190]. Meanwhile, by improving the activations,
the computations can be significantly reduced. For example,
by using hierarchical softmax on vocabulary with 10,000
words, [144] sped up network training more than 250×. If
there was no overhead and no constant term, the speedup
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could be 750×. Besides, the network with ReLU could reach
a 25% training error rate on CIFAR-10 while being 6× faster
than the one with tanh [117].

Above all, it is necessary to combine the above strategies
to reduce the computations in iterative optimization. How-
ever, to maintain the effectiveness with filter decomposition,
it is essential to analyze the complexity of each operation
carefully and modify a model progressively [49], [92]. We
also note that, model compression also plays a vital role in
deep learning. More details can be found in [55], [230].

3.1.4 For Tree-based Models
Tree-based models build hierarchical trees from a root to
leaves by recursively splitting the instances at each node
using different decision rules [172], such as Gini index
and entropy. After that, random forest (RF) and gradient
boosting decision trees (GBDT) introduce ensemble learning
to improve the robustness of classifiers and enhance their
accuracies. The former trains each tree independently. The
latter learns trees sequentially by correcting errors, and often
applies second-order approximation for custom losses [75].
Motivation. Given n instances with d features, finding the
best split for each node generally leads to the computational
complexity of O(nd) by going through all features of each
instance. Thus, the datasets with millions of instances and
features will lead to huge computational burdens when
growing trees. To address this issue, the relaxation of de-
cision rules becomes significantly important, which can be
performed from the views of instances and features.
Relaxation with instance reduction. Implementing in-
stances sampling while growing trees is the simplest
method of relaxing the rules and reducing costs [65], which
benefits both trees, RF, and GBDT. Besides, one can take
advantage of sparse features to ignore invalid instances
when evaluating each split, making the complexity linear
to the number of non-missing instances [52]. To improve the
representation of sampled instances for GBDT, GOSS prefers
the instances with large gradients [112].
Relaxation with feature simplification. Feature sampling
is an alternative for rule relaxation, which considers on-
ly a subset of features at each split node [36]. Besides,
histogram-based boosting groups features into a few bins
using quantile sketches in either a global or local manner
and then perform the splitting based on these bins directly
[21], [52]. Since a part of features rarely take nonzero values
simultaneously, EFB develops a greedy bundling method
to locate these features and then merges them by only
extending the range of exclusive features [112].
Discussion based on experimental results. Below we dis-
cuss the strengths and weaknesses of the relaxation of deci-
sion rules. Firstly, randomly sampling 30% to 20% instances
could speed up GBDT 3× to 5× while improving its perfor-
mance [76]. Sparsity-aware splitting also ran 50× faster than
the naive version on Allstate-10K [52]. On the other hand,
local histogram aggregation resulted in smaller numbers
of iterations than the global one by refining the histogram
strategy [52]. Meanwhile, EFB additionally merged implic-
itly exclusive features into much fewer features, leading
to better performance than sparsity-aware splitting [112].
Secondly, although the relaxed rules significantly speed up

the training of tree-based models, it may result in extra
costs. For example, GOSS requires the cost of computing
gradients, and sparsity-aware splitting has to maintain a
nonzero data table with additional memory costs.

3.1.5 Summary
We have reviewed various LML methods from the perspec-
tive of computational complexities. Now we discuss both
the advantages and disadvantages of the above methods.

Firstly, kernel and graph-based models can be scaled
up and optimized more efficiently than deep models. Be-
sides, experts can introduce their domain knowledge on
input features and develop specific similarities for these
two models. Since the sum of positive semidefinite matrices
is still positive semidefinite, it is also easier to merge the
similarities of different types of features into a single model
[211]. Of note, although graphs generally lead to smaller
memory costs than kernels, they are only able to handle the
data that is satisfied with the cluster assumption [228].

Secondly, benefit from the hierarchical feature extrac-
tion on structural instances, deep models can obtain much
higher classification accuracies [17], [171]. However, these
methods in turn require huge time costs for training the
over-parameterized models. Although filter decomposition
methods reduce the computations remarkably, the archi-
tectures demand careful designs [190]. Besides, some deep
models are mathematically equivalent to kernelized ridge
regressions that learn their own kernels from the data [170].
However, they can only build kernels in finite-dimension
spaces, and their representations are generally uninter-
pretable, making predictions hard to be explained [20]. In
contrast, tree-based models with hierarchical splitting are
more interpretable. Besides, these models can be directly
integrated into many other methods for acceleration, such
as label trees with binary classifiers [22].

3.2 Optimization Approximation

Optimization approximation scales up machine learning
from the perspective of computational efficiency. In each
iteration, these methods only compute the gradients over
a few instances or parameters to avoid most useless com-
putations [220]. As a result, they increase the reduction in
the optimization error per computation unit and obtain an
approximate solution with fewer computations. For a small
Eopt, advanced mathematical techniques must be used to
guarantee the effectiveness of approximation. According to
targeted scenarios, we further categorize them into mini-
batch gradient descent, coordinate gradient descent, and
numerical integration based on Markov chain Monte Carlo.
For convenience, an overview is provided in Tab.2.

3.2.1 For Mini-batch Gradient Descent
The methods of mini-batch gradient descent (MGD)1 aim
to solve the problems with a modest number of parameters
but a large number of instances. Compared with stochastic
gradient descent, MGD utilizes better gradients estimated
over more instances per iteration and generally obtains fast
local convergence with lower variances.

1. MGD in this paper is equal to mini-batch SGD in other papers.
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TABLE 2
A brief lookup table for LML methods based on Optimization Approximation.

Categories Strategies Representative Methods
adaptive sampling of mini-batches dynamic batch sizes [183], proportional instance sampling [13], [86].

Mini-batch correction of first-order gradients momentum [152], [160], weighted historical gradients, [64], [108], [174].
Gradient Descent approximation of higher-order gradients mini-batch Quasi-Newton [38], mini-batch Gauss-Newton [72].

adjustment of learning rates refer to iterations [212], to gradients [69], [225], to moments [116], [164].
Coordinate selection of parameters Gauss-Seidel manner [41], [98], [151], Gauss-Southwel rules [67], [153], [178].
Gradient Descent fast solutions of subproblems using extrapolated points [19], [124], [129], [151], [175], caching [35], [178].
Numerical Integration mini-batch gradient without M-H tests 1st-order Langevin dynamics [158], [202], 2nd-order Langevin dynamics [51].

Fig. 2. The diagram of mini-batch gradient descent, where the steps in
red are key points for improving the computational efficiency.

Motivation. We first review the basic formulation of MGD.
Suppose Xt refers to a mini-batch of instances with the
size of mt, and Q denotes the objective function built upon
the parameter matrix W. Let ∂Q(W;xi) be the stochastic
gradient on xi and Gt = 1

mt

∑
i∈Xt

∂Q(Wt;xi) indicates
the aggregated stochastic gradient on Xt. Similar to gradient
descent, the parameter W can be updated by

Wt+1 = Wt − ηGt (5)

with a learning rate of η. For large-scale datasets, updating
parameters based a few instances leads to large variances of
gradients and makes optimization unstable. Although we
can estimate gradients with large and fixed batch sizes, it
remarkably increases per-iteration costs [33].

To address this issue, many LML methods have been
proposed by improving gradient information in each itera-
tion with a few extra computations. According to the roles
in MGD, we review the methods from four complementary
aspects. An illustrative diagram is shown in Fig.2.

Adaptive sampling of mini-batches. We take account of
both the sizes of mini-batches and the sampling of instances.
Firstly, since the naive algorithms that partially employ
gradient information sacrifice local convergence, we can in-
crease batch sizes gradually via a prescribed sequence [183].
Besides, linear scaling is effective for large mini-batches [87].
Secondly, as randomly selected instances are independent of
optimization, it is worth considering both data distributions
and gradient contributions. Specifically, we can enforce the
sampling weights of instances to be proportional to the
L2 norm of their gradients [13]. Besides, by maintaining a
distribution over bins and learning the distribution per t
iterations, computations can be further reduced [86].

Correction of first-order gradients. Performing the correc-
tion on mini-batch gradients provides an alternative to im-
prove the quality of search directions with lower variances,
which enables a larger learning rate for accelerations. On the
one hand, gradient descent with momentum stores the latest
gradients and conducts the next update based on a linear
combination of the gradient and previous updates [160].
Gradients descent with Nesterov momentum first performs
a simple step towards the direction of the previous gradient
and then estimates the gradient based on this lookahead
position [152]. On the other hand, SAG utilizes the average
of its gradients over time to reduce the variances of current
gradients [174], and SVRG develops a memory-efficient
version which only needs to reserve the scalars to constrict
the gradients at subsequent iterations [108].

Approximation of higher-order gradients. When the con-
dition numbers of objective functions become larger, the op-
timization can be extremely hard owing to ill-conditioning
[61]. To solve this issue, MGD methods thus introduce the
approximation of second-order information with successive
re-scaling [122], [135], [187]. Similar to inexact Newton al-
gorithms, a basic solution is to employ conjugate gradient
algorithms to estimate Hessian matrices. However, as the
mini-batch size is much smaller, these algorithms imple-
mented in a nearly stochastic manner can lead to very noisy
results. To this end, mini-batch-based Quasi-Newton (MQN)
and Gauss-Newton algorithms (MGN) are proposed, which
improve the approximation by only using first-order in-
formation. In particular, MQN introduces online L-BFGS
to approximate the inverse of Hessian based on the latest
parameters and a few gradients at previous mini-batches
[38]. MGN builds the Hessian approximation based on the
Jacobian of the predictive function inside quadratic objective
functions [72]. When logarithmic losses are used in probabil-
ity estimation, it enables faster implementation without the
explicit Jacobian matrices. It is worthwhile noting that we
usually can offset the costs of these approximations when
the size of mini-batches is not too small [33].

Adjustment of learning rates. The learning rate plays an
important role in the convergence [169]. Specifically, a small
rate may slow down the convergence, while a large rate
can hinder convergence and cause the objective function to
fluctuate around its minimum. Although the rate decayed
by the number of iterations can alleviate this issue [212],
recent studies propose to adjust it more carefully according
to optimization processes. For example, Adagrad prefers
smaller rates for the parameters associated with frequently
occurring dimensions and larger rates for the ones asso-
ciated with infrequent dimensions [69]. Besides, Adadelta
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Fig. 3. The diagram of coordinate gradient descent, where the steps in
red are key points for improving computational efficiency.

takes account of the decaying average over past squared
gradients [225]. The motivation is that, by restricting the
length of accumulated gradients to some fixed sizes, we can
reduce the aggressive when decreasing learning rates [23].
Meanwhile, learning rates can also be updated based on the
second moment. For example, Adam prefers flat minima in
error surfaces [116]. Besides, Nadam and AMSGrad intro-
duce Nesterov-accelerated gradients and the maximum of
past squared gradients into Adam, respectively [68], [164].

Discussion based on experimental results. Now we discuss
the effectiveness of the above strategies. Firstly, adaptive
sampling of mini-batch can clearly improve computational
efficiency. By doubling batch sizes during training, [183]
reduced the time cost from 45 mins to 30 mins on Ima-
geNet. Besides, [86] introduced adaptive sampling and only
used 30% epochs to obtain the same accuracy of uniform
sampling. Since updating the statistic information does not
need to be frequent, its extra computational cost is insignif-
icant. Secondly, by correcting gradients for lower variance,
SVRG converged faster than the MGD using learning rate
scheduling [108]. Thirdly, by approximating the second-
order information, [135] achieved 6× to 35× faster when
solving eigensystems. MQN also reached a lower objec-
tive value with competitive computing time to the original
MGD [38]. Finally, by taking the frequency of parameters
and the decaying of gradients into account for learning
rates, Adagrad and Adadelta could only use 20% epochs to
achieve the same result of normal optimizers [225]. Based on
adaptive moment estimation, Adam further reduced more
than 50% computations [116]. A comprehensive comparison
of learning rate schemes can be found in [113]. Of note, since
these strategies play different roles in optimization, one can
apply all for further acceleration [80].

3.2.2 For Coordinate Gradient Descent

The LML methods built upon coordinate gradient descen-
t (CGD) aim at addressing the problems with a modest
number of instances in a high dimension. These problems
frequently arise in areas like natural language processing
[220] and recommender systems [18], [93].

Motivation. We first present the basic formulation of CGD
[204]. Let Q(W) denote the objective function with the
parameter matrix of W, and It contain the indexes of the
selected parameters in the t-th iteration. As only a few
parameters need to be updated, CGD can take all instances

into account and optimize the selected parameters to opti-
mal solutions in each iteration. Specifically, let W+Zt refer
to the expected solution on selected parameters, namely Zt

only contains non-zero values at the indexes in It. In each
iteration, CGD minimizes the following subproblem

g(Zt) = Q(W + Zt)−Q(W), (6)

where Zti,j = 0,∀{i, j} /∈ It. Although the scales of the
reduced subproblems are small and many available solvers
can be directly used for the optimization [11], CGD can still
lead to an expensive time cost for exact solutions during
iterative optimization. Besides, updating each parameter
with the same number of iterations causes a massive amount
of redundant computations.

To address these issues, we review LML methods from
two aspects: the selection of parameters and the fast solution
of subproblems. For convenience, an illustrative diagram
showing their roles is displayed in Fig.3.

Selection of parameters. For convergence with a smaller
number of iterations, the indexes must be selected carefully.
Typically, the selection of these parameters follows a Gauss-
Seidel manner [217], namely, each parameter is updated at
least once within a fixed number of consecutive iterations.
As features may be correlated, performing the traversal
with a random order of parameters in each iteration has
empirically shown the ability of acceleration [41], [98], [151].
On the other hand, Gauss-Southwell (GS) rules propose to
take advantage of gradient information for the selection,
which can be regarded as performing the steepest descent
[178]. To avoid the expensive cost in GS rules, we can
connect them to the nearest neighbor search and introduce
a tree structure to approximate the rules [67], [153]. Besides,
by introducing the quadratic approximation on objective
functions and performing the diagonal approximation on
Hessian matrices, the selection of multiple indexes can be
reduced to separable problems [221].

Fast solutions of subproblems. Similar to accelerated gra-
dient descent, extrapolation steps can be employed for ac-
celerated coordinate descent methods [124], [151]. Suppose
Q(W)=p(W)+q(W), where p(W) and q(W) are smooth
and nonsmooth, respectively. Accelerated proximal gradient
(APG) first replaces p(W) with the first-order approxima-
tion regularized by a trust region penalty and then uses
the information at an extrapolated point to update the next
iterate [129]. With appropriate positive weights, it can im-
prove the convergence remarkably while remaining almost
the same per-iteration complexity to the proximal gradient
[19], [175]. To address nonconvex problems, the monotone
APG method proposed in [125] introduces sufficient descent
conditions with a line search. It reduces the average number
of proximal mappings in each iteration and speeds up
the convergence. Moreover, if both p(W) and q(W) are
nonsmooth, ADMM introduces Douglas-Rachford splitting
to solve the problem, which is extremely useful when the
proximal operators can be evaluated efficiently [35]. Of
note, similar to standard iterative optimization, common
heuristics can be used for speedup, such as caching variable-
dependent eigendecomposition [35] and pre-computation of
non-variable quantities [178].
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Discussion based on experimental results. Now we discuss
the efficiency of the above strategies for solving primal
and dual problems. On the one hand, when optimizing L2-
SVM with correlated features, the CGD based on random
permutation could obtain the same relative difference to
the optimum with 2× to 8× fewer training costs [41].
Besides, due to the sparsity of the solutions of L1 and
L2 regularized least squares problems, CGD based on GS
rules not only outperformed random and cyclic selections
with 5× to 10× fewer epochs for faster convergence but
also used 2× less running time including the estimation of
statistical information [153]. On the other hand, for solving
lasso, APG only required 20% time of the basic proximal
gradient, and ADMM further saved 50% time costs [155].
Besides, when solving linear inverse problems like image
deblurring, the result of the proximal algorithm ISTA after
10,000 iterations could be obtained by its accelerated ver-
sion with 275 iterations [19], [60]. For nonconvex logistic
regression with capped L1 penalties, nonmonotone APG
with released conditions obtained a higher accuracy with
75% fewer costs than monotone APG [125]. In addition, by
caching eigendecomposition, ADMM solved problems 20×
faster than computing it repeatedly in each iteration [35].

3.2.3 For Numerical Integration with MCMC
The methods based on Markov chain Monte Carlo (MCMC)
are widely used in Bayesian posterior inference on p(W|X )
[27], such as M-H and Gibbs sampling [57], [89]. Unlike
the gradient-descent optimization with multi-dimensional
integrals on p(X )=

∫
W p(X|W)p(W)dW, they introduce

numerical approximations by recording samples from the
chain and avoid the huge time costs in high-dimensional
models. Specifically, they first generate candidate samples
by picking from distributions and then accept or reject
them based on the corresponding acceptance ratios. To
enhance acceptance probabilities and improve efficiency,
more methods introduce the gradient of the density of target
distributions to generate samples at high-density regions.

Motivation: Given a dataset of n instances, most gradient-
based sampling methods [150] introduce the Langevin dy-
namic and update parameters based on both the gradient
and the Gaussian noise as

Wt +
εt
2
{∂Wt

logp(Wt) +
∑
x∈X

∂Wt
logp(x|Wt)}+ vt, (7)

where the step size εt and the variances of noise vt∼N(0, εt)
are balanced. As a result, their trajectories of parameters can
converge to the full posterior distribution rather than just
the maximum a posteriori mode. However, the calculation
of gradients per interaction faces the computation over the
whole dataset, and expensive M-H accept/reject tests are
required to correct the discretization error. Although Gibbs
sampling is free from M-H tests, it is still limited to the exact
sampling from conditional posterior distributions. Thus,
many stochastic gradient MCMC methods based on mini-
batches are proposed to address the above issues.

Mini-batch gradient without M-H tests. SGLD first intro-
duces the scaled gradients that estimated from mini-batch
instances to approximate the gradient of the log-likelihood
[202]. Besides, it discards the M-H test and accepts all the

generated samples, since its discretization error disappears
when εt→0. To reduce the number of iterations, SGFS
prefers samples from approximated Gaussian distributions
for large step sizes and switches to samples from the non-
Gaussian approximation of posterior distributions for small
step sizes [10]. Meanwhile, SGHMC introduces a second-
order Langevin dynamics with a friction term to improve
the exploration of distant space [51]. In addition, SGRLD
extends SGLD for models on probability simplices by us-
ing Riemannian geometry of parameter spaces [158], and
SGRHMC further takes advantages of both the momentum
of SGHMC and the geometry of SGLRD [136].

Discussion based on experimental results. Now we show
the effectiveness of the above MCMC methods for Bayesian
posterior inference. Firstly, these methods enable efficient in-
ference for large-scale datasets. For example, SGRLD could
perform LDA on Wikipedia corpus while Gibbs sampling
was not able to run [158]. Secondly, different mini-batch
gradient variants can inherit the properties of their original
versions. For example, SGHMC could generate high-quality
distant samples and reduce more than 50% iterations than
SGLD for training Bayesian neural networks [51]. Besides,
SGRHMC resulted in lower perplexities of LDA than both
SGRLD and SGHMC while remaining similar costs [136].

3.2.4 Summary

To enhance the computational efficiency and remain reliable
solutions, the above methods prefer the computations that
produce higher reduction in optimization errors. Firstly,
both MGD and CGD methods take the importance of in-
volved instances or parameters into account and introduce
the careful selections for reducing the time cost. Meanwhile,
both can take advantage of Nesterov’s extrapolation steps
and tune learning rates with accumulated gradients or use a
line search for faster convergence. Secondly, CGD is more
suitable for optimizing models with a large number of
parameters, especially for linear models where data is stored
with inverted indexes. In contrast, if the number of features
is much smaller than the number of instances, one should
solve problems based on MGD. Thirdly, for handling large
models with a massive amount of instances, it is natural
to combine two strategies together, i.e., updating a subset
of parameters with a few instances in each iteration. For
example, a recently proposed method called mini-batch
randomized block coordinate descent estimates the partial
gradient of selected parameters based on a random mini-
batch in each iteration [235]. Finally, mini-batch gradient
MCMC algorithms improve qualities of samples and accel-
erate Bayesian inference. Besides, these algorithms generally
resemble MGD from different views, such as additive noise
and momentum. However, since samples from the dynam-
ics of native stochastic variants may not always converge to
the desired distribution, some necessary modification terms
must be introduced to substitute the correction steps [51],
[136]. Besides, the theory on how these additions differen-
tiate a Bayesian algorithm from its optimization remains to
be studied [43].

Meanwhile, a significant part of the above LML methods
focuses on handling convex problems, while only a few
methods can address nonconvex problems. Besides, most
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methods solve target problems directly. Instead, one may
seek the transformed forms of their problems and develop
more appropriate algorithms by referring related work in
other domains. Details will be discussed in Sec.4.1.2.

3.3 Computation Parallelism
Computation parallelism reduces practical time costs from
the perspective of computational capabilities. The motiva-
tion is, mutually-independent subtasks can be processed
simultaneously over multiple computing devices. For this
purpose, many parallel processing systems have been devel-
oped. On the one hand, these systems increase the number
of computations per time unit based on powerful hardware;
on the other hand, they introduce advanced software to
schedule hardware efficiently. According to the scenarios
of hardware, we review the systems from two categories,
as shown in Tab.3, including the systems with multi-core
machines and those with multi-machine clusters. Below we
introduce their main characteristics, aiming at utilizing their
developments to benefit efficient machine learning methods.

3.3.1 For Multi-core Machines
The systems here take advantage of multi-core machines for
parallelism. Specifically, all cores can access common mem-
ories, and each of them execute subtasks independently.
Motivation. To enhance the computational ability of a single
machine, recent processing systems increase the number of
parallelable instructions by introducing multiple processors
into the machine, such as multiple-core CPUs and GPUs.
Although their theoretical capabilities could be improved
almost linearly with respect to the number of cores, the
practical speedup is much lower owing to the overhead.
To improve the effectiveness, users have to handle tedious
works such as the scheduling of cores and memory.

To address this issue, we review representative works
that provide the interfaces with different levels of simplicity
and flexibility. Consequently, one can take their advantages
and smoothly implement LML models in a single machine.
Adoption of highly-optimized libraries. When the memory
is sufficient, we can directly utilize multi-core CPUs or
GPUs to perform the optimization with available highly-
optimized libraries, e.g., Mkl for Intel CPUs and Cuda for
Nvidia GPUs. On the one hand, CPUs can use relatively
cheap RAMs and handle complex operations in parallel. For
example, Liblinear and FPSG provide the efficient solutions
to L1-regularized linear classification and parallel matrix
factorization [56], [58], respectively. For general purposes,
Shogun is compatible with support vector machines and
multiple kernel learning [185]. Shark additionally support-
s evolutionary algorithms for multi-objective optimization
[99]. Of note, lock-less asynchronous parallel (ASP) can
further take advantage of CPU cores and reduce the over-
head for parallelizing MGD [163]. On the other hand, GPUs
built upon thousands of stream cores are better at handling
simple computations in parallel. In particular, deep learning
systems are highly benefited from GPU-accelerated tensor
computations and generally provide automatic differenti-
ation, such as Theano [25], Caffe [103], MXNet [53], Ten-
sorFlow [5] and PyTorch [156]. For example, TensorFlow
optimizes execution phase based on the global information

of programs and achieves the high utilization of GPUs [5].
PyTorch introduces easy-to-use dynamic dataflow graphs
and offers the interface to wrap any module to be paral-
lelized over batch dimension [156].

Improvement of I/O accesses. When the memory cannot
handle a LML model at once, we have to break it into
multiple parts, where each part is computed in parallel
and different parts are implemented sequentially. In this
case, the I/O accesses result in an in-negligible overhead
for overall computations, and the effective utilization of
memory and extra storage becomes essential. For example,
to handle a large graph with ne edges, GraphChi divides
its vertices into many intervals, where each is associated
with a shard of ordered edges [119]. When performing
updating from an interval to the next, it slides a window
over each of the shards for reading and writing, imple-
menting the asynchronous model with O(2ne) accesses.
To avoid expensive pre-sorting of edges, X-Stream instead
proposes an edge-centric implementation in synchronous
by streaming unordered edge lists [168]. However, it needs
to read edges and generate updates in the scatter phase
and read updates in the gather phase, leading to O(3ne)
accesses. Recently, GridGraph introduces a two-level parti-
tioning, which streams every edge and applies the generated
update instantly [238]. It only requires one read pass over
edges and several read/write passes over vertices, leading
to nearly O(ne) accesses. Considering that the memory of
GPU is expensive and intermediate feature maps account for
the majority of usage, vDNN moves the intermediate data
between GPU and CPU, which can train larger networks
beyond the limits of the GPU’s memory [165].

Discussion based on experiments. The systems based on
multi-core machines have shown their power to accelerate
the implementation of LML. In particular, when the mem-
ory is sufficient, FPSG could speed up matrix factorization
nearly 7× with a 12-core CPU [58]. Besides, Theano was
able to achieve 5× faster for training CNNs on GPUs rather
than CPUs and 6× faster for optimizing DBNs [25]. Even
with limited memory, by scheduling I/O accesses efficiently,
we can still utilize the parallelism and train large models
within acceptable time costs. For example, GraphChi used a
mac mini and successfully solved large Pagerank problems
reported by distributed systems [119]. For the same number
of iterations, GridGraph only required fewer than 50% time
costs of others [238]. Besides, with the support of CPU
memory, vDNN could optimize a deep network with the
memory requirement of 67 GB based on a 12GB GPU [165].

3.3.2 For Multi-machine Clusters

With the explosion of data size, processing systems based
on distributed clusters have attracted increasing attention.
These systems utilize local area networks to integrate a set
of machines, where each runs its own tasks.

Motivation. Distributed processing systems introduce par-
allelism at two levels, including a number of nodes in a
cluster and multiple cores within the individual node. One
can also construct huge models for complex tasks if model
parallelism is applied. Nevertheless, the main challenge of
applying a cluster is managing (heterogeneous) machines,
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TABLE 3
A brief lookup table for LML methods based on Computation Parallelism.

Categories Strategies Representative Methods
Multi-Core adoption of optimized libraries acceleration with CPUs [56], [58], [99], [185], with GPUs [5], [25], [103], [156].
Machines improvement of i/o accesses balance memory and disks [119], [168], [238], balance CPU and GPU memory [165].

mapreduce abstraction mapreduce [167], [179], [29], spark [223], supporting libraries [28], [142], [224].
Multi-Machine graph-parallel abstraction bulk synchronous [138], asynchronous [133], GAS decomposition [48], [84].
Clusters parameter server abstraction distributed networks [53], [62], gradient boosting [104], general-purpose system [209].

allreduce abstraction tree-based [52], butterfly-based [3], [112], ring-based [2], [4], [102], [177], hybrid [87].

Fig. 4. The toy examples of distributed processing systems. (a) the structure of a mapreduce system [63], (b) the structure of graph-parallel systems
[138], (c) a sketch of parameter-server-based cluster [126], and (d) a step of data communication of the ring-based allreduce abstraction [177].

such as data communication across the nodes. These tedious
works may lead to low resource utilization.

Below we review typical distributed systems to simplify
the developments of parallelism [39]. We present the intro-
duction according to their top-level topology configurations.

MapReduce abstraction. The MapReduce abstraction di-
vides computations among multiple machines [63], where
each works with a part of tasks in parallel with its locality-
distributed data. As we can see from Fig.4(a), MapReduce
systems reformulate complex models into a series of simple
Map and Reduce subtasks. Specifically, Map transforms its
local data into a set of intermediate key/value pairs, and
Reduce merges all intermediate values associated with the
same intermediate key. The systems take care of the details
of data partitioning, execution scheduling, and communi-
cation managing. As a result, the methods that meet this
abstraction can take advantage of locality-distributed data
and be executed on clusters smoothly.

Hadoop MapReduce is the first open-source implemen-
tation, which introduces HDFS files to store the data over
disks [179]. Its flexibility allows new data-analysis soft-
ware to either complement or replace its original elements,
such as YARN [195]. Besides, to support iterative machine
learning methods, Iterative MapReduce introduces a loop
operator as a fundamental extension [167], and Hybrid
MapReduce presents a cost-based optimization framework
to combine both the task and data parallelism [29]. On
the other hand, Spark employs the immutable distributed
collection of objects RDD as its architectural foundation
[222] and distributes the data over a cluster in the memory
to speed up iterative computations [223]. Besides, a stack of
libraries are developed to further simplify its programming.
For example, MLlib provides a variety of linear algebra and
optimization primitives [142] and Spark Streaming eases
the streaming learning [224]. Recently, SystemML enables
Spark to compile sophisticated machine learning methods
into efficient execution plans automatically [28].

Graph-parallel abstraction. The graph-parallel abstraction

shown in Fig.4(b) exploits the structure of sparse graphs to
improve communication between different machines [111].
Specifically, it consists of a sparse graph and a vertex-
program. The former is partitioned into different subsets
of vertexes over multiple machines. The latter is executed in
parallel on each vertex and can interact with the neighboring
vertexes with the same edge. Compared with MapReduce,
these systems constrain the interaction based on sparse
adjacency and reduces the cost of communication.

Pregel is a fundamental graph-parallel system running
in bulk synchronous parallel (BSP) [138]. It consists of a
sequence of supersteps, where messages sent during one
superstep are guaranteed to be delivered at the begin-
ning of the next superstep. However, since the slowest
machine determines the runtime in each iteration, Pregel
can result in idling problems. GraphLab thus introduces
ASP by releasing the constraints of supersteps [133], which
updates the vertexes using the most recent values. More-
over, PowerGraph introduces a gather, apply, and scatter
(GAS) decomposition to factor vertex-programs for power-
law graphs [84] and enables the computations in both BSP
and ASP. Recently, PowerLyra uses centralized computation
for low-degree vertices to avoid frequent communications
and follows GAS to distribute the computation for high-
degree vertices [48]. Similarly, it supports both BSP and ASP.
Parameter server abstraction. The parameter server abstrac-
tion distributes data and workloads over worker nodes and
maintains distributed shared memory for parameters on
server nodes [126]. An example is shown in Fig.4(c). This
abstraction enables an easy-to-use shared interface for I/O
access to models, namely, workers can update and retrieve
the different parts of parameters as needed.

DistBelief first utilizes computing clusters with the pa-
rameter server [62], where the model replicas in workers
asynchronously fetch parameters and push gradients with
the parameter server. It thus can train deep networks with
billions of parameters using thousands of CPU cores. After
that, MXNet adopts a two-level structure to reduce the
bandwidth requirement [53], where one level of servers
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manages the data synchronization within a single machine,
and the other level of servers manages intermachine syn-
chronization. Moreover, the naive distributed Tensorflow
introduces dataflow with the mutable state to mimic the
functionality of a parameter server, which provides ad-
ditional flexibility on optimization algorithms and consis-
tency schemes [5]. Besides, to handle GBDT with high
dimensions, DimBoost transforms each local histogram to a
low-precision histogram before sending it to the parameter
server [104]. Once these local histograms are merged on the
servers, a task scheduler assigns active tree nodes among
all workers to calculate the best split for each tree node.
Meanwhile, distributed MCMC methods are also developed
for large-scale Bayesian matrix factorization [9], where the
parameter server updates its global copy with new sub-
parameter states from workers. In addition, as a general-
purpose system, Petuum is also benefited from this abstrac-
tion [209] and simplifies the distributed development of
various scalable machine learning models.

Allreduce abstraction. The allreduce abstraction reduces the
target arrays in all m machines to a single array and returns
the resultant array to all machines. It retains the convergence
of gradient descent in BSP and can be divided into tree-
based [50], butterfly-based [206], and ring-based [1].

XGBoost introduces tree-allreduce by organizing all the
workers as a binomial tree [52]. Its aggregation steps follow
a bottom-to-up scheme starting from the leaves and ending
at the root. However, these steps cannot overlap in its imple-
mentation. LightGBM thus introduces butterfly-allreduce
with a recursive halving strategy [3], [112]. Specifically, at
the k-th step, each worker exchanges n

2k data with a worker
that is m

2k distance away. This process iterates until the
nearest workers exchange their data.

Recently, ring-allreduce has attracted more attention by
employing bandwidth-optimal algorithms to reduce com-
munication overhead [157]. Fig.4(d) displays an illustrative
example, where m machines communicate with their neigh-
bors 2×(m-1) times by sending and receiving parameter
buffers. Specifically, in the first (second) m-1 iterations, each
machine receives a buffer and adds it to (substitutes it for)
its own value at the corresponding location. These new
values will be sent in the next iteration. To ease the use
of ring-allreduce on GPUs, Nvidia develops Nccl for its
devices [102]. After that, Horovod integrates Nccl into deep
learning and allows users to reduce the modification of their
single-GPU programs for the distributed implementation
[177]. Pytorch utilizes Nccl to operate heavily-parallel pro-
grams on independent GPUs [4]. Recently, Tensorflow also
provides two different experimental implementations for
ring-allreduce [2]. In particular, Caffe2 introduces butterfly-
allreduce for inter-machine communication while using
ring-allreduce for local GPUs within each machine [87].

Discussion based on experiments. Effective distributed sys-
tems not only allow us to handle larger-scale datasets and
models, but also make data communication more efficient.
However, different abstractions show their characteristics
in specific tasks. For example, for PageRank, Hadoop and
Spark took 198 and 97 seconds for each iteration, while Pow-
erGraph only used 3.6 seconds and was significantly faster
[84]. Based on the differentiated partition for low-degree

and high-degree vertices, PowerLyra further outperformed
PowerGraph with a speedup ranging from 1.4× to 2×. For
matrix factorization, Petuum was faster than Spark and
GraphLab [209]. Besides, when the number of workers was
not a power of two, DimBoost could outperform XGBoost
and LightGBM significantly by merging parameters with
data sparsity [104]. Based on ring-allreduce, Horovod makes
TensorFlow more scalable on a large number of GPUs. In
particular, it could half the time cost of naive distributed
Tensorflow when training CNNs with 128 GPUs [177].

3.3.3 Summary
Now we provide rough guidance of parallelism strategies.
Firstly, CPUs are optimized for handling the models with
complex sequential operations. For example, by introduc-
ing locality sensitive hashing for the sparse selection of
activate neurons, the training of FCNs on CPUs was 3.5×
faster than the best available GPUs [42]. On the contrary,
GPUs could enhance the computational capability greatly
for the intensive computational models with huge numbers
of dense matrix and vector operations [74]. Secondly, al-
though machine learning methods may be compatible with
multiple abstractions [154], it is crucial to choose a proper
abstraction for a specific setting. In general, graph-parallel
and ring-allreduce are more suitable for graph models and
deep learning models, respectively. Thirdly, we can ease
the development of higher-level systems by leveraging the
existing systems. For example, built upon YARN, Angel de-
velops a parameter server system for general-purpose LML
[106], which supports both model and data parallelism. Sim-
ilarly, Glint applies Spark for convenient data processing in
memory and introduces an asynchronous parameter server
for large topic models [100]. Moreover, PS2 launches Spark
and parameter servers as two separate applications without
hacking Spark [233], which makes it compatible with any
version of Spark. GraphX also introduces the graph-parallel
to accelerate graph-based models on Spark [85].

However, the best choice of practical developments
varies for the size of datasets and need further studies.
For example, for training SVMs, the efficiency of GPUs
only became higher than CPUs when the sizes of dataset-
s increased to some degree [127]. Besides, owing to the
overhead, the return of distributed systems becomes lower
with the increasing number of processors, and we have to
control the return on investment regardless of abstractions.
For example, although larger CNNs was supposed to benefit
more with multiple machines, a model with 1.7 billion
parameters only had 12× speedup using 81 machines [62].

3.4 Hybrid Collaboration
The methods in the above sections scale up LML from the
perspective of computational complexities, computation-
al efficiency, and computational capabilities, respectively.
Thus, they are independent of each other, and any partial
enhancement enables the overall improvement.
Motivation. In general, we can enhance machine learning
efficiency by jointly using multiple strategies directly [40],
[71], [88]. The most typical work is deep learning, which
has been undergoing unprecedented development over the
past decades [47], [54], [123]. The key reasons that facilitate
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TABLE 4
A brief lookup table for LML methods based on Hybrid Collaboration.

Categories Strategies Representative Methods

Gradient Compression quantize component values [14], [105], [176], [203], [226], remove redundancy gradients [130].
Delay limited delay with stale synchronous [7], [101], [121], [166], [234], [236], infinite delay [240].

its rapid development are detailed as follows. Firstly, deep
learning methods introduce prior knowledge such as filter
decomposition to simplify predictive models with fewer
parameters [216]. Secondly, owing to its mini-batch-based
optimization, various advanced MGD algorithms can be
employed to train neural networks, leading to faster con-
verges [116]. Thirdly, since GPUs are paired with a highly-
optimized implementation of 2D convolutions and well-
suited to cross-GPU parallelization [117], it is efficient for
researchers to debug their advanced networks [219].

However, the above perspectives can be further im-
proved for synergy effects. In particular, for simplified
models, we can modify optimization algorithms to improve
parallelism. We divided them into two strategies as listed in
Tab.4, including gradient compression and gradient delay.

Gradient compression. To further accelerate the data com-
munication in distributed optimization, many compression
methods have been proposed, where only a small number
of data is communicated across machines. For example, 1-bit
MGD quantizes each component of gradients aggressively
to one bit per value and feeds back the quantization error
across mini-batches [176]. On the contrary, QSGD directly
quantizes the components by randomized rounding to a
discrete set of values while preserving the expectation with
minimal variance [14]. As a result, it makes a trade-off
between the number of bits communicated per iteration
and the added variance. To exploit valuable gradients with
outliers, TernGrad introduces layer-wise ternarizing and
gradient clipping [203]. Meanwhile, DGC only transmits
gradients larger than a threshold for sparsification while
accumulating the rest of gradients locally [130]. In partic-
ular, when gradients are sparse and their distribution is
nonuniform, the nonzero elements in a gradient are gen-
erally stored as key-value pairs to save space. SketchML
thus takes the distribution into account and uses a quantile
sketch to summarize gradient values into several buckets for
encoding [105]. Besides, it stores the keys with a delta format
and transfers them with fewer bytes. Furthermore, ZipML
proposes to optimize the compression on gradients, models,
and instances and then perform an end-to-end low-precision
learning [226]. Of note, the above compression methods are
compatible with various parallel systems, such as multiple
GPUs [14], [176] and parameter servers [105], [130], [203].

Gradient delay. ASP-based MGD and CGD algorithms
[131], [163] minimize the overhead of locking and alleviate
the idling issues. However, they remain huge costs of data
communication. The stale synchronous parallel (SSP) algo-
rithms with gradient delays thus get more attention [96]. For
example, [121] orders CPU cores where each updates vari-
ables in a round-robin fashion. Its delay reduces the cost of
reading parameters of the latest models. [7] introduces tree-
allreduce in distributed settings, where each parent averages
the gradients of the children nodes from the previous round

with its own gradient, and then passes the result back up the
tree. In addition, CoCoA and Hydra use workers to perform
some steps of optimization with their local instances and
variables in each iteration [101], [166], respectively. EASGD
introduces an elastic force between central and local models
for more exploration to avoid many local optima [234].
Moreover, [240] proposes to solve subproblems exactly on
each machine without communication between machines
before the end, namely infinite delay. Since the delayed gra-
dient is just a zero-order approximation of the correct ver-
sion, DCASGD leverages the Taylor expansion of gradient
functions and the approximation of the Hessian matrix of
the loss function to compensate for delay [236]. On the other
hand, delayed gradients can also be utilized to improve
the convergence, which in turn reduces the communication.
For example, ECQSGD and DoubleSqueeze accumulate all
the previous quantization errors rather than only the last
one for error feedback [191], [205]. Besides, [140] introduces
the delayed gradients to chooses adaptive learning rates in
parallel settings.
Discussion based on experiments. Now we give a brief
discussion on the methods of hybrid collaboration. Firstly,
gradient compression can reduce not only the time cost per
iteration but also the overall cost. For example, compared
with full 32-bit gradients, the training of 16-GPU AlexNet
with 4-bit QSGD led to more than 4× speedup on commu-
nications, and 2.5× speedup on overall costs for the same
accuracy [14]. In particular, for linear models, SketchML
could accelerate the original optimizer and achieve more
than 4× improvements [105]. Of note, models with larger
communication-to-computation ratios and networks with s-
maller bandwidth can benefit more from compression [203].
Secondly, gradient delay also reduces the amount of data
communication and remarkably increases the proportion
of time workers spend on the computation. For example,
based on local updates, CoCoA was able to converge to a
more accurate solution with 25× faster than the best non-
locally updating competitor [101]. Besides, the reduction of
communication cost could be nearly linear with respect to
the delay under a large number of workers [234].

4 DISCUSSIONS

Existing LML methods have established a solid foundation
for big data analysis. Below we outline some promising
extension directions and discuss important open issues.

4.1 Extension Directions

4.1.1 For Model Simplification
The methods of model simplification reduce computational
complexities with adequate prior knowledge. Therefore,
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we may further explore the distributions and structures of
instances to enhance the scalability of predictive models.
Explore distributions of data. The low-rank approximation
for kernels assumes that mapped instances in RKHS nearly
lie on a manifold of a much lower dimension, and their
inner products can be estimated on the low-dimension
space. Graph-based methods are also scaled up based on
the assumption that nearby points are more likely to share
labels. Thus, to make use of large-scale unstructured data,
the underlying global and local data distributions must be
considered [82]. Based on this motivation, HSE and AER
build hierarchical indexes on unlabeled instances for coarse-
to-fine query selection [15], [78]. As a result, although the
cost of the quality estimation of each candidate is not re-
duced, they lower computational complexities significantly
by decreasing the number of candidates.
Exploit structures within instances. Various types of convo-
lutions based on filter decomposition have been proposed to
reduce the sizes of deep models. These works demonstrate
that to make receptive fields more effectively, a critical
direction is to take the features with multi-scale invariance
into account and make use of the structural information of
instances. Following this motivation, DCNs thus develop
deformable convolutions to model larger transformations
efficiently [59], [239], which only add a few parameters.
Analyze objective tasks. A more in-depth analysis of objec-
tive tasks provides another powerful way for model simpli-
fication. For example, inspired by the coarse-to-fine catego-
rization of visual scenes in scene-selective cortex [147], hi-
erarchical convolutional networks are developed for image
classification [213]. These networks decrease the number of
parameters and correspondingly reduce the involved com-
putations per iteration. In addition, distributing parameters
and computations according to the frequencies of objective
predictions also reduces computational complexities [143].

4.1.2 For Optimization Approximation
To enhance computational efficiency, the methods of opti-
mization approximation prefer the computations that bring
significant reduction in optimization errors. However, most
of them focus on convex problems. Besides, researchers gen-
erally follow stereotyped routines to address their emerging
problems without seeking more appropriate solutions. To
further speed up the optimization for a broader range of
scenarios, the following extensions can be considered.
Optimization for nonconvex problems. The optimization
may fall into poor local minima when problems are noncon-
vex [187], leading to unstable performances in real-world
tasks. Therefore, it is necessary to enhance the ability of
algorithms to escape or bypass the poor minima. To this end,
various randomized operations can be considered, such as
randomized weight initialization and random noise on gra-
dients [188]. Besides, inspired by curriculum learning [114],
we may first utilize instances that are easy to fit and then
gradually turn to difficult ones, such as boundary instances.
As a result, it allows algorithms to obtain a good solution at
early stages and then tune it for a better minimum.
Solutions inspired by mathematical models. By transform-
ing target problems into classical models in other mathemat-
ical areas, such as geometry, we can borrow the experiences

of handling these models to accelerate the optimization. For
example, a simple iterative scheme used to find the mini-
mum enclosing ball (MEB) can be used to solve large-scale
SVM problems [194]. The motivation is, the dual of both
MEB and SVM problems can be transformed into the same
form. Similarly, [107] introduces cutting-plane algorithms
that iteratively refine a feasible set to solve SVM on high-
dimension sparse features.

4.1.3 For Computation Parallelism
Computation parallelism enhances computational capacities
based on multiple computing devices. Benefit from existing
systems, we can take advantage of flexible programming
interfaces and low data communication for parallel data
processing. However, with the fast upgrading of hardware,
software, and predictive models, the following issues recent-
ly attract much attention.
Flexible hardware abstractions. Highly-efficient parallel
computations require fast data communication between d-
ifferent nodes. Although allreduce is able to minimize the
communication overhead for most methods, it supposes
that the memory and the computational ability of different
nodes are at the same level. Otherwise, the utilization of re-
sources will be limited by the weakest one. Considering the
real-world scenarios where distributed systems generally
consist of heterogeneous devices, more flexible abstractions
need to be studied. A possible solution is to utilize domain-
specific knowledge such as intra-job predictability for clus-
ter scheduling [159], [208]. Besides, we may further explore
hybrid abstractions and take account of traffic optimization
to balance computational resources [46], [87].
Modularized open-source software. There are increasing
interests in supporting open-source projects. Several moti-
vations are as follows. The developments of parallel systems
on general-purpose machine learning can be challenging
even for large companies. Besides, open-source software can
benefit more communities and democratize data science. To
this end, normalized and modularized learning frameworks
(similar to computer architectures [196]) are preferred. As a
consequence, any localized enhancement can be achieved by
contributors, improving the overall efficiency. In addition, to
construct a vibrant and lively community, it is necessary to
provide easy-to-use interfaces with different programming
languages to benefit more researchers [145], as well as the
simple postprocessing for productization.

4.2 Open Issues

4.2.1 Tighter Bounds of Complexities
Various complexities during the procedure of data analysis
can be used to evaluate required computational resources in
real-world tasks. Below we discuss some important ones.
Bounds of computational complexities. The computational
complexity determines the numbers of computing devices
and the spaces of memory. However, many existing bounds
of computational complexities only provide general guar-
antees for any probability distribution on instances and for
any optimization algorithm that minimizes disagreement on
training data. To estimate the complexities more precisely, it
is necessary to establish tighter bounds for real-world data
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distributions and specific optimization algorithms, which
may be achieved with the assistance of heuristical argu-
ments from statistical physics [6].
Other related complexities. The measures of many other
complexities also need to be studied. For example, over-
parameterized networks can be well trained with a much
smaller set of instances than the one estimated based on the
current sample complexity [184]. Besides, more instances are
required for adversarial training to build robustness [173]. In
addition, the complexity of communication and the number
of gates in a circuit can be used to estimate the practical
limits on what machines can and cannot do [16].

4.2.2 Collection of valuable data
Large-scale datasets play a crucial role in LML, as the
patterns for making decisions are learned from data with-
out being explicitly programmed. Therefore, our machine
learning community is in great need of large-scale instance-
level datasets, and efficient methods for generating such
data either in a supervised or unsupervised manner. To this
end, we highlight the following directions.
Annotation tools. Annotation tools aim at building large-
scale annotated datasets by collecting contributions from a
lot of people, such as LabelMe in computer vision [192].
To reduce the costs of obtaining high-quality labels and
simplify the annotation procedure, it is essential to ease
the modes of annotation and interaction for oracles with
scalable active learning methods [109]. Besides, it is diffi-
cult to collect clean instances with categorical and strong
supervision information. The reasons are as follows. Firstly,
there exist a large number of instances whose classes are
fuzzy themselves. The one-hot or multi-hot encoding that
groups them into specific classes can significantly harm
their supervision information. Secondly, the inconsistent
and inaccurate labels are ubiquitous in real-world situations
due to subjective data-labeling processes. To address these
issues, efficient weakly-supervised learning recently obtains
urgent attention [237].
Data augmentation. Data augmentation applies transfor-
mations to training sets to increase their scales. Based on
the augmented data, we can improve the performance of
predictive models, especially when original datasets are
imbalanced or their instances are insufficient. These trans-
formations can be as simple as flipping or rotating an image,
or as complex as applying generative adversarial learning.
Recently, BigGAN augments image datasets successfully by
synthesizing high fidelity natural instances [37].

4.2.3 Moderate Specialization of Hardware
Over the past years, the design of computer architectures fo-
cuses on computation over communication. However, with
the progress of semiconductor, we observed a new reality
that data communication across processors becomes more
expensive than the computation. Besides, the flexibility of
general-purpose computing devices also makes the compu-
tation energy-inefficient in many emerging tasks. Although
some special-purpose accelerators have been employed to
be orders of magnitude improvements such as GPUs, FP-
GA, and TPUs, most of them are customized to a single-
or narrow-type of machine learning methods. Therefore,

for future hardware, it is necessary to exploit both the
performance and energy-efficiency of specialization while
broadening compatible methods [95].

4.2.4 Quantum Machine Learning

Quantum computers exploit superposition and entangle-
ment principles of quantum mechanics, obtaining an im-
mense number of calculations in parallel. Compared to
digital computers, they can reduce both execution time and
energy consumption dramatically, such as IBM-Q. However,
since the programming models of these quantum computers
are fundamentally different from those of digital computers,
more attention should be paid to redesign the corresponding
machine learning methods [26], [162].

4.2.5 Privacy Protection

With the development of LML, increasing importance has
been attached to privacy protection. Specifically, when per-
sonal and sensitive data are analyzed in the cloud or other
distributed environments [8], it is necessary to ensure that
the analysis will not violate the privacy of individuals. Re-
cently, federate learning provides an alternative by bringing
codes to edge devices and updating the global model with
secure aggregation [30], [31].

5 CONCLUSIONS

Large-scale machine learning (LML) has significantly facili-
tated the data analysis in a mass scale over the past decades.
However, despite these advances, the current LML requires
further improvements to handle rapidly increasing data. In
this paper, we first surveyed existing LML methods from
three independent perspectives, namely, model simplifica-
tion to reduce the computational complexity, optimization
approximation to improve computational efficiency, and
computation parallelism to enhance the computational ca-
pability. After that, we discussed the limitations of these
methods and the possible extensions that can make fur-
ther improvements. Besides, some important open issues in
related areas are presented. We hope that this survey can
provide a clean sketch on LML, and the discussions will
advance the developments for next-generation methods.
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[72] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale direct
monocular slam,” in Proceedings of ECCV, 2014, pp. 834–849.

[73] A. Farahat, A. Ghodsi, and M. Kamel, “A novel greedy algorithm
for nyström approximation,” in Proceedings of AISTATS, 2011, pp.
269–277.

[74] K. Fatahalian, J. Sugerman, and P. Hanrahan, “Understanding the
efficiency of gpu algorithms for matrix-matrix multiplication,”
in Proceedings of ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, 2004, pp. 133–137.

[75] J. Friedman, T. Hastie, R. Tibshirani et al., “Additive logistic
regression: a statistical view of boosting (with discussion and a
rejoinder by the authors),” The annals of statistics, vol. 28, no. 2,
pp. 337–407, 2000.

[76] J. H. Friedman, “Stochastic gradient boosting,” Computational
statistics & data analysis, vol. 38, no. 4, pp. 367–378, 2002.

[77] W. Fu, M. Wang, S. Hao, and T. Mu, “Flag: Faster learning
on anchor graph with label predictor optimization,” IEEE TBD,
no. 1, pp. 1–1, 2017.

[78] W. Fu, M. Wang, S. Hao, and X. Wu, “Scalable active learning by
approximated error reduction,” in Proceedings of SIGKDD, 2018,
pp. 1396–1405.

[79] Y. Fujiwara and G. Irie, “Efficient label propagation,” in Proceed-
ings of ICML, 2014, pp. 784–792.

[80] N. Gazagnadou, R. M. Gower, and J. Salmon, “Optimal mini-
batch and step sizes for saga,” arXiv preprint arXiv:1902.00071,
2019.

[81] T. V. Gestel, J. A. Suykens, G. Lanckriet, A. Lambrechts, B. D.
Moor, and J. Vandewalle, “Bayesian framework for least-squares
support vector machine classifiers, gaussian processes, and k-

ernel fisher discriminant analysis,” Neural computation, vol. 14,
no. 5, pp. 1115–1147, 2002.

[82] N. Gilardi and S. Bengio, “Local machine learning models for s-
patial data analysis,” Journal of Geographic Information and Decision
Analysis, vol. 4, no. ARTICLE, pp. 11–28, 2000.

[83] A. Gittens and M. W. Mahoney, “Revisiting the nyström method
for improved large-scale machine learning,” JMLR, vol. 17, no. 1,
pp. 3977–4041, 2016.

[84] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“Powergraph: distributed graph-parallel computation on natural
graphs.” in Proceedings of OSDI, vol. 12, no. 1, 2012, p. 2.

[85] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “Graphx: graph processing in a distributed dataflow
framework,” in Proceedings of OSDI, vol. 14, 2014, pp. 599–613.

[86] S. Gopal, “Adaptive sampling for sgd by exploiting side infor-
mation,” in Proceedings of ICML, 2016, pp. 364–372.

[87] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large mini-
batch sgd: Training imagenet in 1 hour,” arXiv preprint arX-
iv:1706.02677, 2017.
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ABSTRACT

We study the problem of active learning for multi-class clas-
sification on large-scale datasets. In this setting, the existing
active learning approaches built upon uncertainty measures
are ineffective for discovering unknown regions, and those
based on expected error reduction are inefficient owing to
their huge time costs. To overcome the above issues, this pa-
per proposes a novel query selection criterion called approx-
imated error reduction (AER). In AER, the error reduction
of each candidate is estimated based on an expected impact
over all datapoints and an approximated ratio between the
error reduction and the impact over its nearby datapoints. In
particular, we utilize hierarchical anchor graphs to construct
the candidate set as well as the nearby datapoint sets of these
candidates. The benefit of this strategy is that it enables a hi-
erarchical expansion of candidates with the increase of labels,
and allows us to further accelerate the AER estimation. We
finally introduce AER into an efficient semi-supervised clas-
sifier for scalable active learning. Experiments on publicly
available datasets with the sizes varying from thousands to
millions demonstrate the effectiveness of our approach.
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1 INTRODUCTION

With the explosive growth of datasets, supervised learning
and semi-supervised learning have been broadly used in many
multi-class classification tasks, such as speech recognition [6],
image classification [4], and data mining [5]. The former di-
rectly employs labeled data to train its classifier, while the
latter further exploits the prior knowledge from unlabeled
data to improve the classification.

To obtain satisfactory performance, classifiers require high-
quality labeled data. Active learning that selects valuable
queries to label has been studied to address this problem [9],
[18]. The uncertainty-based sampling is the simplest query s-
election criterion [12]. However, as the methods based on this
criterion consider each datapoint independently, they ignore
the accuracy improvement on other datapoints after labeling
the selected query. Although several density-weighting ap-
proaches were developed to relieve this issue [14], [25], they
are still insufficiently effective to discover unknown regions,
especially at the early phase of query selection.

An alternative active learning criterion called expected
error reduction (EER) was therefore proposed. In general,
EER makes a tradeoff on the reduction in generalization
errors achieved by either labeling an unknown region or tun-
ing decision boundaries under its current classifier, which
leads to impressive performance [1], [29]. Nevertheless, EER
brings a huge time cost owing to its error reduction esti-
mation. That is, for each datapoint, the classifier has to be
re-optimized with its possible labels and the labels of other
datapoints need to be re-inferred to calculate its expected
generalization error. As a result, even scalable classifiers are
employed [16], [23], [28], the EER-based query selection is
still inefficient for active learning on large-scale datasets.

To overcome the above issues, this paper proposes a nov-
el criterion called approximated error reduction (AER). Ac-
cording to AER, we estimate the error reduction of a candi-
date based on an expected impact over all datapoints, and
an approximated ratio between the error reduction and the
impact over its nearby datapoints. Meanwhile, a hierarchi-
cal anchor graph [23] is utilized to build the candidate set as
well as the nearby datapoint sets of these candidates. Of note,
the construction of the hierarchical anchor graph is efficient,
and the anchor sets and the datapoint set on this graph es-
tablish coarse-to-fine coverings of the data distribution. As
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a consequence, it allows us to expand the candidate set hier-
archically with the increase of labeled queries, which can fur-
ther accelerate the AER estimation. Finally, by introducing
the proposed AER criterion into a scalable semi-supervised
classifier, we obtain an efficient and effective active learn-
ing approach for query selection on large-scale datasets. The
promising results on benchmark datasets highlight the supe-
rior performance of our approach1.

The main contributions of our work are as follows.

• We propose a novel AER criterion for query selection.
Compared with EER, it enables an efficient estima-
tion of the error reduction without re-inferring labels
of massive datapoints. We also utilize a hierarchical an-
chor graph to construct a small candidate set, which
allows us to further accelerate the AER estimation.

• We introduce the AER criterion into a scalable semi-
supervised classifier for active learning. Meanwhile, we
develop a fast algorithm to calculate the expected im-
pact over all datapoints for all candidates, which can
be performed via direct matrix operations rather than
multiple iterations.

• We show that, apart from the similar time cost to that
of the uncertainty-based sampling, the remaining time
cost of our AER-based approach is independent of da-
ta sizes during the query selection. Furthermore, our
AER-based approach can still achieve comparable or
even higher accuracies than the EER-based approach.
The experimental results on different types of datasets
demonstrate the effectiveness of our approach.

The rest of this paper is organized as follows. In Section
2, we review the related work on active learning. In Sec-
tion 3, we introduce the preliminaries of hierarchical anchor
graphs and an efficient semi-supervised classifier. In Section
4, we propose the AER criterion and use it for scalable active
learning. Section 5 validates the strengths of our approach on
different-size datasets, and Section 6 concludes this paper.

2 RELATED WORK

Recent years have witnessed a number of studies on active
learning for searching valuable queries and reducing manu-
al labeling costs [15], [25]. In particular, discriminative ac-
tive learning has obtained satisfactory performance in many
real-world applications. Different from representative active
learning that only considers the feature spaces of data distri-
butions [2], [26], these approaches are prediction dependent
and can query informative instances to facilitate the improve-
ment of the classifier for a higher accuracy.

Uncertainty-based sampling is the simplest and most wide-
ly used discriminative criterion [13]. The methods built upon
this criterion generally select the query that is the least cer-
tain, where different uncertainty measures can be used, such
as entropy and ℓp loss. In particular, Joshi et al. [10] pro-
posed to estimate the uncertainty by merely using the prob-
abilities of the best and the second best classes. As these

1 Both the datasets and codes are available at http://github.com/
fuweijie/AER

approaches are prone to outliers, some methods combining
representativeness were also developed [9], [14], [21], [25]. For
example, Settles et al. [21] proposed to select queries based
on a density-weighting uncertainty with the cosine similari-
ty. Li et al. [14] proposed to employ the mutual information
rather than the marginal density. However, the former faces
a challenge of combing two different measures, and the lat-
ter has to estimate the mutual information with a cubic time
cost with respect to data sizes. Recently, Dasarathy et al. [7]
proposed to select uncertain queries based on the structure
of a graph, which is inefficient when the number of the dat-
apoints along decision boundaries is large.

Instead of only considering the classifiers based on current
labels, one can further exploit re-optimized classifiers by giv-
ing possible labels on unlabeled datapoints. EER therefore
has become an effective query selection criterion by directly
minimizing the generalization error [1], [29]. Nevertheless, it
also leads to the most expensive query selection approaches,
as classifiers have to be re-optimized with each possible label
and the labels of massive datapoints need to be re-inferred.
Although Zhu et al. [29] proposed a novel method to update
the label matrix of unlabeled data, and Aodha et al. [1] pre-
sented a hierarchical subquery approach for the EER estima-
tion, they are still impractical for large-size datasets, owing
to the inevitable huge time cost of classifier initialization.

Another criterion that considers possible labels is expect-
ed model change, which selects the query with the greatest
expected change on the parameters of a classifier [20]. Com-
pared with EER, it does not require the label re-inference
for datapoints, which remarkably reduces time costs. When
a classifier is trained with gradient-based optimization, it is
equal to select the query that creates the largest change on
the gradient of the objective function [3]. However, this crite-
rion ignores the importance of the parameters corresponding
to different features, which in turn reduces its effectiveness.

In short, the above criteria either do not consider the error
reduction over all datapoints, or face a huge time cost in es-
timating error reduction. In contrast, our AER criterion can
obtain an efficient error reduction estimation, which brings
significant advantages for scalable active learning.

3 PRELIMINARIES

To better present our work, we introduce the preliminaries
of hierarchical anchor graphs and a scalable semi-supervised
classifier. Some important notations are listed in Table 1.

3.1 Hierarchical Anchor Graph

We first introduce hierarchical anchor graphs [23]. An illus-
trative example of graphs is shown in Fig.1

Let X0∈RN0×d indicate the set of datapoints, and each
Xb∈RNb×d (b=1, . . . , h) denote a small set of anchors (land-
mark datapoints) that roughly cover data distributions [16].
A hierarchical anchor graph can be constructed based on the
following constraints: (1). Fine-to-Coarse Coverings. The set-
s of anchors share the same feature space of the datapoint
set, and their sizes are gradually reduced with N1>. . .>Nh.
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Table 1: Notations and Definitions

Notation Definition

X0 The set of datapoints with the dimension d.
N0 The number of datapoints.
h The number of anchor sets.
Xb The b-th set of anchors (h≥b≥1).

Nb The number of anchors in Xb (h≥b≥1).
C The number of classes.

Zb−1,b The inter-set adjacency matrix between Xb−1 and Xb.
ZH The cascaded inter-set adjacency matrix.

⌈·⌉ The nearest points in the connected coarser set.
A The soft label matrix of the coarsest anchor set.

A+ŷqr The updated matrix with an extra label r on xq .

F The soft label matrix of the datapoint set.
YL The class indicator matrix on labeled datapoints.
Ē The average estimated error based on labeled data.

SAL The set of candidates for active learning.

Nq The number of candidates in SAL.
Iq The expected impact over all datapoints of xq .
⟨q⟩ The indices of the nearby datapoints of xq .
N⟨q⟩ The number of the nearby datapoints of xq .

Er⟨q⟩ The error reduction over the nearby datapoints of xq .

E(E+ŷqr
⟨q⟩ ) The generalization error over the nearby datapoints.

I⟨q⟩ The impact over the nearby datapoints of xq .

⌊q⌋ The set of points whose nearest anchor in the
connected coarser set is xq .

These anchor sets bring fine-to-coarse coverings of the da-
ta distribution. (2). Pyramidal Structure. Let G denote a
multiple-set pyramidal graph. The original datapoints in X0

locate at the bottom layer of the pyramid, and the remain-
ing layers are all composed of fine-to-coarse anchor sets with
X1,. . .,Xh. (3). Inter-set Adjacency. The datapoint set and
all anchor sets are linked up to a complete graph with h set-
s of inter-set adjacency edges between the neighboring sets,
such as Zb−1,b∈RNb−1×Nb between Xb−1 and Xb.

In the above graph model, we denote anchors in X1 and Xh

as the finest anchors and the coarsest anchors, respectively.
In particular, if the graph only contains one anchor set (h=1),
we denote anchors in X1 as the coarsest anchors for conve-
nience. Besides, we use ’N1-N2-. . . -Nh-anchor-graph’ to in-
dicate a hierarchical anchor graph built upon h anchor sets
with N1,N2,. . . ,Nh anchors in different anchor sets. More
details of the setting of anchor sets can be found in [23].

The remaining issues of the graph construction involve t-
wo aspects, including the generation of anchor sets and the
inter-set adjacency estimation between the neighboring sets.
To obtain an anchor set, we can perform a fast clustering al-
gorithm on the datapoint set with a predetermined number
of centers [16]. Here we briefly describe the adjacency esti-
mation. Specifically, for each Zb−1,b∈RNb−1×Nb , its weights
can be determined by the kernel regression [16]:

Zb−1,b
ij =

Kσ(xi,xj)∑
j′∈⌈i⌉ Kσ(xi,xj′)

, ∀j ∈ ⌈i⌉, (1)

(datapoint set)et)

datapoint in 

inter-set edges between neighboring sets

po

inter-set edges between neig

anchors in ( 1)

Figure 1: An example of hierarchical anchor graphs.

where σ is the bandwidth of the Gaussian kernel, xi is the
i-th point in Xb−1, and ⌈i⌉ is the set of indices of its s near-
est anchors in the connected coarser set Xb. For large-scale
datasets, we can speed up the weight estimation with the
approximate nearest neighbor search [17], which reduces the
cost of the graph construction to O(N0logN1).

3.2 Scalable Semi-Supervised Learning

Efficient semi-supervised classifiers have been proposed for
large-scale classification [16], [23], [28]. Here we introduce a
scalable one built upon the above graph, which has shown
its effectiveness on many multi-class classification tasks [23].

Let D={(x1, y1), . . . , (xNL , yNL), . . . ,xN0} be the dataset
where the first NL datapoints are labeled from C distinct
classes. Let A denote the soft label matrix on the anchors in
Xh that needs to be optimized. Based on the inter-set adja-
cency in the hierarchical anchor graph, the soft label matrix
on datapoints (F) can be inferred in a hierarchical manner:
F=ZHA∈RN0×C , where ZH=Z0,1(. . . (Zh−1,h))∈RN0×Nh is
the cascaded inter-set matrix between X0 and Xh. Let Λ

be a diagonal matrix with Λjj=
∑N0

i=1 Z
0,1
ij , and rL=ZHT

ZH

−ZHT
Z0,1Λ−1Z0,1TZH be the reduced Laplacian matrix on

the graph. Besides, denote YL=[y1; . . . ;yNL ]∈R
NL×C as the

class indicator matrix of the labeled data, where yir=1 if xi

belongs to the class r, and yir=0 otherwise. Let ZH
L be the

labeled part of ZH, and λ be the parameter that weighs the
fitting constraint against the smoothness constraint in man-
ifold regularization. Hierarchial anchor graph regularization
(HAGR) obtains an optimal solution of A in a closed form:

A = (ZH
L

T
ZH

L + λrL)
−1

ZH
L

T
YL ∈ RNh×C (2)

with a time cost of O(Nh
3), where Nh is the size of Xh.

Finally, HAGR employs the soft labels of the anchors in
Xh to infer the label of any unlabeled datapoint in X0:

argmaxr∈{1,...,C}
ZH

i· ×A·r

πr
, i = NL + 1, . . . , N0, (3)

where A·r is the r-th column of A, and πr=1TZHA·r is the
normalization factor [16]. As we have obtained ZH, this label
inference can be performed with a time cost of O(N0NhC).
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4 PROPOSED APPROACH

In Section 4.1, we propose a novel query selection criterion
called approximated error reduction (AER). We also intro-
duce its implementing details based on hierarchical anchor
graphs for scalable active learning. In Section 4.2, we present
our AER-based approach. Section 4.3 analyzes its time cost,
and Section 4.4 makes a comparison to other criteria.

4.1 Approximated Error Reduction

In AER, to obtain valuable queries, the error reduction of
a candidate is estimated based on an expected impact over
all datapoints and an approximated ratio between the error
reduction and the impact over its nearby datapoints.

Suppose fi is the soft label assignment of xi based on

current labeled datapoints, and f̂i is the hard indicator vector

with f̂ir=1 if r=argmaxrfir and f̂ir=0 otherwise. Let SAL

be the candidate set. For each candidate xq∈SAL, we first
calculate its expected impact over all datapoints:

Iq =
C∑

r=1

fqr

N0∑
i=1

ℓ(fi, f
+ŷqr
i ), (4)

where f
+ŷqr
i s are the re-inferred soft labels based on the cur-

rent labeled datapoints and xq with the label r, and ℓ denotes
the l2 loss. As we can see, Iq calculates the change on the
soft labels of all datapoints by assuming new labels on xq.

Then, we consider the ratio between the error reduction
and the impact of xq. Instead of an exact ratio built upon
all datapoints, AER only requires an approximated one for
xq based on its error reduction and impact over nearby dat-
apoints. Let ⟨q⟩ be the indices of the nearby datapoints with
the size of N⟨q⟩. The approximated ratio can be calculated:

Er⟨q⟩
I⟨q⟩

=
E⟨q⟩ − E(E+ŷqr

⟨q⟩ )

I⟨q⟩
, (5)

where
E⟨q⟩ =

∑N⟨q⟩
i=1 ℓ(fi, f̂i),

I⟨q⟩ =
∑C

r=1 fqr
∑N⟨q⟩

i=1 ℓ(fi, f
+ŷqr
i ),

E(E+ŷqr
⟨q⟩ ) =

∑C
r=1 fqr

∑N⟨q⟩
i=1 ℓ(f

+ŷqr
i , f̂

+ŷqr
i ),

are the accumulated estimated error, the impact and the gen-
eralization error over these nearby datapoints, respectively.

As
Er⟨q⟩
I⟨q⟩

is estimated based on nearby datapoints, its confi-

dence is lower than that built upon all datapoints. Therefore,

instead of applying the same confidence to Iq and
Er⟨q⟩
I⟨q⟩

, the

objective function of the AER criterion is formulated as

argmaxxq
Iq × (

Er⟨q⟩
I⟨q⟩

)
1−ϵ

, xq ∈ SAL, (6)

where ϵ∈(0:1) aims to control the confidence of
Er⟨q⟩
I⟨q⟩

. Of

note, the above formulation leads to the following conclusion.

Proposition.1: Suppose
Er⟨q⟩
I⟨q⟩

>0 and Iq>0. For Eq.6

with ϵ∈(0, 1), the influence of
Er⟨q⟩
I⟨q⟩

on the objective value is

reduced, and that of Iq is relatively increased.

finer anchor 

coarser anchor 

 

 

 

Figure 2: An example of S⌊q⌋ that denotes the set
of finer anchors whose nearest connected coarser an-
chor is xq. For simplification, only a tiny fraction of
inter-set edges of the graph are shown.

We leave the proof of the proposition to the Appendix.
Besides, when ϵ is closer to 1, the reduction will be larger.

For example, if ϵ=1, the influence of
Er⟨q⟩
I⟨q⟩

will be zero.

In this paper, we simply set ϵ to the average estimated er-

ror as ϵ=Ē= 1
N0

∑N0
i=1 ℓ(fi, f̂i). The idea behind is that, when

the error is large, the classification result is often instable.
As a result, labeled candidates can affect more datapoints
rather than their nearby ones, which reduces the confidence
of the approximated ratio. Later we show its effectiveness
via the experimental comparison to another strategy [14].

In short, for each xq in SAL, if its expected impact over all

datapoints (Iq) and its ratio over nearby datapoints (
Er⟨q⟩
I⟨q⟩

)

can be efficiently obtained, we can perform scalable active
learning via Eq.6. Below we introduce these implementing
details based on hierarchical anchor graphs.

4.1.1 Hierarchical Expansion of Candidates ( SAL)

We first introduce a hierarchical expansion technique to con-
struct the candidate set by employing both the coarse-to-fine
anchors and datapoints on a hierarchical anchor graph.

Instead of using all unlabeled datapoints as candidates,
we initialize a candidate set with the coarsest anchors in Xh:

SAL ⇐ Xh. (7)

As the size of Xh is much smaller than that of the unlabeled
data, it can significantly reduce the time cost of the AER
estimation. Besides, this candidate set is sufficiently repre-
sentative for query selection at the early stage.

With the increase of labels, a finer candidate set is needed
to tune decision boundaries. Let S⌊q⌋={x⌊q⌋1 , . . .} be the set
of finer points whose nearest connected coarser anchor is xq.
After xq∈SAL is labeled, we expand candidates with S⌊q⌋:

SAL ⇐ (SAL ⊖ xq) ∪ S⌊q⌋, (8)

where SAL⊖xq denotes the operation that removes xq from
SAL. Different from employing all connected finer points, we
alleviate the rapid expansion of the candidate set based on a
few candidates in S⌊q⌋. An illustrative example is shown in
Fig.2, where only x⌊q⌋1 , x⌊q⌋2 are added into the candidate
set, while the other connected finer points of xq are ignored.
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Figure 3: An example of the hierarchical assignment
of nearby datapoints. In this example, the query xq is
labeled and x⌊q⌋1 , x⌊q⌋2 are added into the candidate
set. We only assign the datapoints in ⟨q⟩ to their
approximate nearest candidate x⌊q⌋1 or x⌊q⌋2 .

4.1.2 Hierarchical Assignment of Nearby Datapoints (⟨q⟩)
Then, we consider the assignment of the nearby datapoints.
Similar to the candidate expansion, we build the nearby dat-
apoint sets for all candidates in a hierarchical manner.

Specifically, we first build nearby sets for the candidates
in Xh by assigning all datapoints in X0 to their approximate
nearest candidates. Denoting ⟨q⟩ as the nearby datapoints
of the q-th candidate, we have:{

⟨1⟩ ∪ ⟨2⟩ ∪ . . . = X0,
⟨1⟩ ∩ ⟨2⟩ ∩ . . . = ⊘.

When a candidate xq∈SAL is labeled and S⌊q⌋ is added
into the candidate set, we re-build nearby sets for these new
candidates in S⌊q⌋ in a similar way based on the nearby dat-
apoints of xq (See Fig.3). As a consequence, we obtain:{

⟨⌊q⌋1⟩ ∪ ⟨⌊q⌋2⟩ ∪ . . . = ⟨q⟩,
⟨⌊q⌋1⟩ ∩ ⟨⌊q⌋2⟩ ∩ . . . = ⊘.

In general, for each finer candidate, the number of its n-
earby datapoints is smaller than those of coarser ones.

4.1.3 Fast Computation of the Expected Impact( Iq)

Here, we focus on the computation of the expected impact
over all datapoints. Let A+ŷqr denote the updated classifier
with an extra label r on xq. Taking HAGR as an example
with F=ZHA, we can therefore obtain:

Iq =

C∑
r=1

fqr∥ ZH(A+ŷqr −A) ∥2F. (9)

To calculate Eq.9, we focus on its Frobenius norm:

trace((A+ŷqr −A)
T
∆(A+ŷqr −A)), (10)

where ∆=ZHT
ZH. As ∆ only needs to be calculated once,

the time cost here is much smaller than that of the gener-
alization error in EER, where the labels of all datapoints
must be incrementally re-inferred. However, as the time cost
of each A+ŷqr scales as O(N3

h), for Nq candidates within C
classes, the total cost of O(N3

hNqC) can still be expensive.
The remaining challenge is how to compute Eq.10 for all

candidates efficiently. To solve this issue, we present an ef-
ficient method for the impact estimation in the Appendix,
which only involves fast matrix operations. In this way, the
time cost can be drastically reduced to O(N2

hNq).

4.1.4 Fast Estimation of the Approximated Ratio (
Er⟨q⟩
I⟨q⟩

)

Now, we estimate the ratio between the error reduction and
the impact over nearby datapoints. A naive solution is to cal-
culate the two involved terms directly. However, it is practi-
cally inefficient to incrementally calculate them for all candi-
dates or store all the relevant matrices in the memory, such

as ∆⟨q⟩=ZH
⟨q⟩

T
ZH

⟨q⟩ for the impact estimation over nearby

datapoints, where ZH
⟨q⟩ denotes the nearby part of xq in ZH.

Below we introduce an alternative to accelerate this step.
First, for the candidate xq, we approximate its expected im-
pact over its nearby datapoints (I⟨q⟩) based on its expected
impact over all datapoints (Iq):

I⟨q⟩ ≈
Iq

1 + µ
, (11)

in which the auxiliary parameter µ≥0 describes the degree
that the impact overflows the nearby datapoints.

Then we consider the error reduction over nearby data-
points (Er⟨q⟩). Instead of the repeated calculation, we eval-
uate it based on the estimated errors of nearby datapoints:

Er⟨q⟩ =
N⟨q⟩∑
i=1

ηi × ℓ(fi, f̂i), i ∈ ⟨q⟩, (12)

where the auxiliary parameter ηi∈[0:1]. It describes the de-
gree that the expected error of the i-th nearby datapoint
will be reduced from its current estimated error. Since these
parameters of the nearby datapoints of each candidate ηis
tend to be similar, we can approximate Eq.12 with the accu-
mulated error over these nearby datapoints (E⟨q⟩) in Eq.5:

Er⟨q⟩ ≈ η ×
N⟨q⟩∑
i=1

ℓ(fi, f̂i) = η × E⟨q⟩. (13)

Note that the auxiliary parameters µ and η can be dif-
ferent for each candidate, which may involve complex rela-
tionships with respect to the uncertainty over their nearby
datapoints. However, such an evaluation is difficult to be
described. To circumvent this problem, in this work, we pro-
pose to apply the same settings for all candidates. Our rea-
soning here is as follows: as the candidate set is expanded
hierarchically, we expect that the influence on the nearby
datapoints of one candidate will not be much larger than
that of the other candidates. With this simplification, based
on Eq.11 and Eq.13, we can directly obtain the ratio in Eq.6:

Er⟨q⟩
I⟨q⟩

= (η × E⟨q⟩)/(
Iq

1 + µ
) = η(1 + µ)×

E⟨q⟩

Iq
. (14)

4.2 Scalable Active Learning

Now we present the AER-based scalable active learning.
Given a dataset D with NL labeled datapoints, we first

construct a hierarchical anchor graph with Eq.1 and build a
candidate set SAL via Eq.7. We initialize the classifier based
on all datapoints with a few labels via Eq.2, and infer the
labels of unlabeled datapoints with Eq.3.

Then for each candidate xq∈SAL, we compute its expected
impact over all datapoints (Iq) based on the proposed fast
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Table 2: Our Approach for Scalable Active Learning

Input: datapoint set X0, anchor sets Xbs, the parameters s
and λ, the number of labeled datapoints T .

# Initialization
1. Construct a hierarchical anchor graph with Eq.1.
2. Build a set of candidates SAL with Eq.7 and find the

nearby datapoint sets of these candidates.
3. Initialize a scalable classifier, such as HAGR.

# Efficient Query Selection
Repeat the following steps until T queries are labeled:

1. Obtain the estimated value in Eq.16 for each candidate based
on the proposed fast algorithm and the labels of datapoints.

2. Ask an oracle for the label of the selected query.
3. Re-train the classifier via Eq.2 and re-infer the labels of

datapoints via Eq.3.
4. Expand the candidate set SAL via Eq.8.

Output: The classifier and the labels of all datapoints.

algorithm mentioned in Section 4.1.3. We employ its nearby
datapoints to estimate its approximated ratio between the

error reduction and the impact (
Er⟨q⟩
I⟨q⟩

). We substitute these

two terms of xq into Eq.6 and obtain its approximated error
reduction over all datapoints (Erq):

Erq = Iq × (
Er⟨q⟩
I⟨q⟩

)
1−ϵ

= Iq × (η(1 + µ)× E⟨q⟩
Iq

)
1−ϵ

= Iϵ
q × E⟨q⟩

1−ϵ × (η(1 + µ))1−ϵ, (15)

where ϵ=Ē . As (η(1+µ))1−ϵ in Eq.15 is a constant for all
candidates, it can be removed without changing the solution
of the optimization problem. Therefore, according to AER,
the following query can be selected:

argmaxxq
Iϵ
q × E⟨q⟩

1−ϵ,xq ∈ SAL. (16)

Once the query is labeled, we re-infer the labels of data-
points and update candidates via Eq.8. In our experiments,
we conduct the query selection until T queries are labeled.

The overall active learning approach is given in Table 2.

4.3 Computational Cost Analysis

Below we analyze the time cost of the proposed approach.
During the initialization step, the time cost of graph con-

struction is O(N0logN1). The total cost of computing ZH,
∆, and rL scales as O(N0Nhs) with the sparse matrix multi-
plication [27]. We optimize HAGR with a cost of O(N3

h). In
short, the time cost here scales as O(N0logN1+N0Nhs+N3

h).
Then, in each iteration of query selection, the following

time costs are required. Firstly, we infer the labels of dat-
apoints in O(N0NhC), and calculate their estimated errors
in O(N0C). Secondly, to estimate the error reduction for Nq

candidates, we compute their expected impact values over
all datapoints in O(N2

hNq) and the approximated ratios in
O(N0+Nq). Finally, we select the query based on AER in
O(Nq). As we have Nq≥Nh, the time cost here can be sim-
plified as O(N0NhC+N2

hNq+N3
h)≈O(N0NhC+N2

hNq).

As we can see, apart from the similar time cost to that
of the uncertainty-based sampling, namely O(N0NhC), the
remaining time cost of our AER-based query selection is in-
dependent of data sizes, which highlights its superiority for
large-scale active learning.

4.4 Discussion on AER

In this section, we discuss the relationships and differences
between the proposed AER criterion and other criteria.

4.4.1 Comparison to Density-Weighting Uncertainty

This learning criterion [21] selects the datapoint that is both
uncertain and representative, which can be formulated as

argmaxxq
d(xq)× ℓNSE(fq), (17)

where d(xq)=
∑NU

i=1simcos(xq,xi) denotes the cosine similari-

ty of xq over NU unlabeled datapoints, and ℓNSE(fq) denotes
the N-best sequence entropy [10]. Eq.17 can be rewritten as

argmaxxq
d(xq)×

ℓNSE(fq)

simcos(xq,xq)
, (18)

where simcos(xq,xq)=1. Similar to Eq.6, the first term eval-
uates the similarity of xq over massive datapoints, and the
second term is the approximated ratio between the uncer-
tainty reduction and the similarity of xq itself. Compared
with AER, Eq.18 estimates the ratio based on a single data-
point, which can be insufficiently effective.

4.4.2 Comparison to Expected Model Change

This learning criterion [3] selects the datapoint that brings
the greatest expected change on the parameters of a classifier.
For HAGR, its query selection can be formulated as

argmaxxq

C∑
r=1

fqr∥ A+ŷqr −A ∥2F. (19)

The change of HAGR is equal to the change on the soft labels
of the coarsest anchors, which is far from the error reduction
over massive datapoints. In contrast, our impact in Eq.9 cal-
culates the change on the soft labels of all datapoints, which
narrows the above gap by introducing data distributions.

4.4.3 Comparison to Expected Error Reduction

In EER, if labeling the candidate xq only reduces the errors
of its nearby datapoints ⟨q⟩, we have Erq=Er⟨q⟩. Below we
show that when µ=0 and η=1, our AER value is equal to
EER, which is independent of the average estimated error Ē .

Since η=1, we obtain E⟨q⟩=Er⟨q⟩ via Eq.13. As all errors
of nearby datapoints are changed to 0, we obtain I⟨q⟩=Er⟨q⟩.
Then as µ=0, we have Iq=I⟨q⟩ via Eq.11. By substituting
the above results into Eq.15, we finally obtain:

Erq = Iϵ
q × E⟨q⟩

1−ϵ × 1 = Er⟨q⟩ϵ × Er⟨q⟩1−ϵ = Er⟨q⟩. (20)

When η ̸=1, and µ̸=0, AER first focuses on the expected
impact over all datapoints for rapid accuracy improvements,
and then adaptively pays attention to the error reduction
over a few nearby datapoints for tuning decision boundaries.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1401



Table 3: Details of the Datasets in Our Experiments.

Num of Num of Num of
Dataset instances categories dimensions

Alphadigits 1,404 36 320
Semeion 1,593 10 256
USPS 7,291 10 256

ISOLET 7,797 26 617
Letter 20,000 26 16
MNIST 70,000 10 784
ImageNet 256,091 200 512

MNIST8M 8,100,000 10 86

5 EXPERIMENTS

In this section, we investigate the effectiveness of our AER
criterion. The experiments are implemented on a PC with
i7-5820K CPU @ 3.30GHz and 64G RAM. We use the fol-
lowing datasets with varying sizes, including Alphadigits2,
Semeion3, ISOLET4, Letter3, USPS5, MNIST6, ImageNet7,
and MNIST8M[23]. Some statistics of them are listed in Ta-
ble 3. For convenience, we regard the first six as medium-size
datasets, and the last two as large-size datasets.

5.1 Comparison to Other Methods

We first compare the proposed AER-based approach with
the methods built upon several state-of-the-art active learn-
ing criteria. For scalability and fair comparisons, we use HA-
GR as the classifier for all active learners, which has shown
its impressive performance on semi-supervised classification
tasks. The methods for comparison are as follows:

1. Random Sampling: This method randomly selects queries
for labeling. We denote it as ’QR’.

2. Maximal Uncertainty: This method selects queries based
on the 2-best sequence entropy [10]. We denote it as ’QU’.

3. Maximal Density-Weighting Uncertainty: This method
selects queries based on the density-weighting entropy with
the cosine similarity [21]. We denote it as ’QDWU’

4. Maximal Expected Model Change: It selects queries
based on the expected change on the parameters of a classi-
fier [3]. This method is denoted as ’QEMC’.

5. Maximal Expected Impact: This method selects queries
based on the proposed expected impact over all datapoints.
We denote it as ’QEI’.

6. Maximal EER: This method selects queries with the
EER evaluation [29]. We denote it as ’QEER’.

7. Maximal AER: This proposed method chooses queries
based AER. It is denoted as ’QAER’.

Note that besides QAER, the candidate sets in QDWU,
QEMC, QEI are also expended in a hierarchical manner for

2available at http://www.cs.nyu.edu/∼roweis/data.html
3available at http://archive.ics.uci.edu/ml
4available at http://www.cad.zju.edu.cn/home/dengcai/
5available at http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets
6available at http://yann.lecun.com/exdb/mnist
7We randomly select 200 classes from ImageNet [19] and build a sub-
set with 256,091 images. We extract their 4,096-D CNN features via
AlexNet [11] and perform PCA to reduce the dimension to 512.
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Figure 4: Average performance curves with respect
to the number of labels on medium-size datasets.

efficient implementation (see Section 4.1.1). Meanwhile, as
the huge time cost of the EER estimation, we only employ
the coarsest anchors as the candidates for QEER. We enlarge
the numbers of anchor sets with the increase of datapoints,
where the sizes of these anchor sets follow the proportion sug-
gested in hierarchical anchor graph models [16], [23], [24].

5.1.1 On Medium-size Datasets

For Alphadigits, Semeion, ISOLET, and Letter, we follow
[24] and build 500-anchor-graphs. We build 2,000-500-anchor-
graphs and 5,000-1,250-anchor-graphs for USPS and MNIST,
respectively. We empirically set λ to 0.1. For active learning,
only 2 instances are randomly sampled as the initial labeled
data. Based on 20 trials, the average accuracy curves are
displayed in Fig.4, and the time costs are listed in Table 4.
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Table 4: Comparison of average time costs (in sec-
onds per query) on medium-size datasets.

Dataset QU QDWU QEMC QEI QEER QAER

Alphadigits 0.01 0.03 0.04 0.04 1.80 0.04
Semeion 0.01 0.01 0.02 0.02 0.67 0.02
USPS 0.01 0.02 0.02 0.02 2.45 0.02

ISOLET 0.02 0.04 0.03 0.04 7.94 0.05

Letter 0.03 0.10 0.11 0.17 13.81 0.20
MNIST 0.04 0.18 0.15 0.17 30.16 0.21
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Figure 5: Average accuracy curves with respect to
the number of labels on large-size datasets.

Table 5: Comparison of average time costs (in sec-
onds per query) on large-size datasets.

Dataset QU QDWU QEMC QEI QEER QAER

ImageNet 2.15 10.05 4.19 7.61 90.73 9.35
MNIST8M 4.22 14.47 10.97 12.19 198.73 16.15

From these results, we can obtain the following observa-
tions. Firstly, compared with QR, QU obtains higher accu-
racies on Semeion, USPS, and MNIST, and receives com-
parable or even worse performance on Alphadigits, ISOLET,
and Letter. The reason behind is that, the uncertainty-based
sampling is insufficiently effective to discover queries that ac-
tually belong to new classes, especially when the number of
classes is large. Secondly, QDWU performs worse than QU in
most cases, which indicates that directly combing the densi-
ty and the entropy is not generally suitable for all classifiers.
Thirdly, as QEMC only considers the changes on the param-
eters of the classifier, it obtains worse performance than QR

with the increase of labels. In contrast, by introducing the
data distribution, QEI can achieve much higher accuracies,
which is consistent with the theoretical analysis in Section
4.4.2. Fourthly, QAER obtains comparable or even better per-
formance than QEER, and its performance is more consistent
to that of QEER than others. This result empirically demon-
strates the effectiveness of our AER criterion on the error
reduction estimation. Finally, when considering both the ef-
ficiency and the effectiveness, QAER highlights its strengths
over other compared methods.

5.1.2 On Large-size Datasets

We also conduct experiments on ImageNet and MNIST8M
with 100,000-10,000-2,500-anchor-graphs. We empirically set
λ to 0.01 in HAGR. By repeating the similar process, we
report the average classification accuracies over 10 trials in
Fig.5 and list the time costs in Table 5.

From these results, the following observations can be made.
Firstly, similar to the pervious results, QEI outperforms QEMC

by giving consideration to data distributions. Secondly, com-
pared with QEI and QEER, QAER can obtain higher accura-
cies after a few iterations of query selection. It means that
introducing uncertainty into active learning criteria will be
beneficial to tune decision boundaries. Thirdly, when taking
account into the time cost in Table 5, we further confirm the
superior performance of QAER for scalable active learning.

5.2 Effectiveness Analysis

5.2.1 On the Formulation of AER

In AER, ϵ is fixed to Ē to control the confidence of the ap-
proximated ratio. To demonstrate the effectiveness, we com-
pare QAER with the following two intermediate versions:

(1). QAER,Ada: This method follows [14] and sets ϵ to differ-
ent values, e.g., {0, 0.1, . . . , 1} to obtain several sub-queries,
and then refines the best query from them based on EER.

(2). QAER,TopK: This method first selects top K(K=10)
datapoints based on AER as sub-queries and then refines
the best query from them based on EER.

We conduct experiments on the USPS dataset with 500-
125-anchor-graphs. The average accuracy curves over 20 trias
of these three methods are displayed in Fig.6(a).

From this figure, we observe that QAER can obtain com-
parable performance to QAER,Ada, which requires the extra
time cost of query refining. The reason behind is that, al-
though the setting of ϵ in QAER,Ada is more flexible, most
of them are useless. For example, at initial stages, the sub-
queries with small expected impact values over all datapoints
will not lead to rapid improvements. With the error reduc-
ing, the sub-queries with large impact values may not im-
prove decision boundaries. In contrast, QAER prefers the dat-
apoints with large impact values at first and those near de-
cision boundaries with the increase of labels. That is, AER
adaptively weighs the impact over all datapoints against the
accumulated uncertainty over nearby datapoints. Meanwhile,
we observe that although QAER performs slightly worse than
QAER,TopK at the early stages, it obtains comparable accura-
cies with the increase of labels. This result also implies that,
we may further improve the performance of QAER with an
extra query refining step, where the time cost is still much
smaller than that of the direct EER-based query selection.

5.2.2 On the Hierarchical Candidate Expansion

We finally investigate the effectiveness of the candidate ex-
pansion based on hierarchical anchor graphs. We compare
QAER with QAER-, which is a simplified QAER without the
candidate expansion via Eq.8. The average accuracy curves
of these two methods are shown in Fig.6(c).
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Figure 6: Average accuracy curves with respect to
the number of labeled instances on USPS.

From this figure, we observe that the accuracies of QAER

and QAER- are similar at initial stages. It means that, al-
though QAER expands the candidate set from the beginning,
it will not immediately fall into finer candidates for local ac-
curacy improvements. Once the performance becomes better
with the increase of labeled data, QAER will pay attention
to these finer candidates and bring higher classification accu-
racies. This result further demonstrates the effectiveness of
introducing finer candidates for tuning decision boundaries.

6 CONCLUSIONS

This paper proposed a novel query selection criterion called
approximated error reduction (AER). Different from other
criteria, AER estimates the error reduction of a datapoint
based on its expected impact over all datapoints and its ap-
proximated ratio between the error reduction and the impact
over its nearby datapoints. Meanwhile, AER employs hierar-
chical anchor graphs to expand a small candidate set with
the increase of labels, which further accelerates its estima-
tion. Benefiting from AER, we can obtain an efficient estima-
tion of the error reduction without incrementally re-inferring
labels of massive datapoints. We introduced AER into an ef-
ficient semi-supervised classifier for scalable active learning.
The experiments on publicly available datasets demonstrat-
ed both the efficiency and the effectiveness of our approach.

It is worthwhile to note that since the supervised and
semi-supervised classifiers in the literature [8], [22], [24], [28]
have similar solutions to HAGR in their model optimiza-
tion, our future work includes the integration of AER with
them, where the proposed fast impact estimation can be gen-
eralized. In these works, all AER-based approaches are sup-
posed to be much fater than EER, as the repeatedly label
re-inference is not required in AER.

APPENDIXES

A. Proof of Proposition 1

Let f(α, β) denote f1(α)×f2(β), where f1(α)=α and f2(β)=

(β)1−ϵ are two mapping functions on the variables α, β>0

with ϵ∈(0,1), respectively. Denote rα=
α1
α2

, and r′α=
f1(α1)
f1(α2)

as

the original ratio and the mapped ratio on α, respective-

ly, and rβ=
β1
β2

, and r′β=
f2(β1)
f2(β2)

as the original ratio and the

mapped ratio on β, respectively. We have (1). rβ>r′β>1(rβ<
r′β<1) if rβ>1(rβ<1). (2). r′α=rα. That is, the mapped r′β is
closer to 1 than rβ , and the mapped r′α is same to rα, name-
ly, the difference of two βs corresponding to two instances
is reduced via the mapping function f2, and that of two αs
is kept via f1. As a consequence, it leads to the reduction
of the influence of β on the objective value, and relatively
increases the influence of α. According to Eq.6, let α denote
the expected impact Iq, and β be the approximated ratio
Er⟨q⟩
I⟨q⟩

, which completes the proof.

B. Fast Impact Estimation

Below we presents the derivation of the fast impact estima-
tion used in Section 4.1.3.

Let zHq be the cascaded inter-set adjacency vector of xq,
and ŷqr be its class indicator vector where only the r-th el-
ement is 1. To obtain Eq.10, the traces of the following terms

are needed:A+ŷqrT
∆A+ŷqr ,A+ŷqrT

∆A, andAT∆A, where

A+ŷqr = (zHq
T
zHq + ZH

L

T
ZH

L + λrL)
−1

(zHq
T
ŷqr + ZH

L

T
YL).

Suppose M=(ZH
L
T
ZH

L + λrL), then A+ŷqr=(zHq
T
zHq +M)

−1

(zHq
T
ŷqr + ZH

L
T
YL). By matrix inversion, we can therefore

calculate A+ŷqr as

(M−1 −
M−1zHq z

H
q
T
M−1

zHq
TM−1zHq + 1

)(zHq
T
ŷqr + ZH

L

T
YL)

Let M̂=M−1, αq=zHq M̂zHq
T
, and βq=

1
1+αq

. We can sub-

stitute the above results into the trace of the first term
(A+ŷqrT

∆A+ŷqr ) and obtain it:

trace[(ŷT
qrz

H
q +YL

TZH
L )(I− βqM̂zHq z

H
q

T
)M̂∆

M̂(I− βqz
H
q z

H
q

T
M̂)(zHq

T
ŷqr + ZH

L

T
YL)]

=trace[ŷT
qr(z

H
q M̂∆M̂zHq

T
)ŷqr] + 2trace[ŷT

qr(z
H
q M̂∆M̂ZH

L

T
YL)]

− 2βqtrace[ŷ
T
qr(z

H
q M̂∆M̂zHq

T
)(zHq MzHq

T
)ŷqr]

− 2βqtrace[ŷ
T
qr(z

H
q M̂∆M̂zHq

T
)(zHq MZH

L

T
YL)]

− 2βqtrace[ŷ
T
qr(z

H
q M̂zHq

T
)(zHq M̂∆M̂ZH

L

T
YL)]

+ β2
q trace[(ŷ

T
qr(z

H
q M̂zHq

T
)(zHq M̂∆M̂zHq

T
)(zHq MzHq

T
)ŷqr]

+ 2β2
q trace[ŷ

T
qr(z

H
q M̂zHq

T
)(zHq M̂∆M̂zHq

T
)(zHq MZH

L

T
YL)]

+ trace[(YT
LZ

H
LM̂)∆(M̂ZH

L

T
YL)]

− 2βqtrace[(Y
T
LZ

H
LM̂∆M̂zHq

T
)(zHq MZH

L

T
YL)]

+ β2
q trace[(Y

T
LZ

H
LM̂zHq

T
)(zHq M̂∆M̂zHq

T
)(zHq M̂ZH

L

T
YL)].

Suppose γq=zHq (M̂∆M̂)zHq
T
, φq=zHq A, ϕq=zHq M̂∆A, and

δ=trace(AT∆A), where A=M̂ZH
L
T
YL. Besides, we obtain

trace(ŷT
qrγqŷqr)=γq, and trace(ŷT

qrϕq)=(ϕq)r, where (·)r is
the r-th element of the inside vector. By substituting them
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into the above equation, we obtain the trace of the first term:

δ + (1− 2αqβq + α2
qβ

2
q )γq + (2αqβ

2
qγq − 2βqγq)(φq)r+

(2− 2αqβq)(ϕq)r − 2βqϕq
Tφq + β2

qγqφq
Tφq,

Similarly, the trace of the second term can be obtained:

trace[A∆M̂(I− βqz
H
q z

H
q

T
M̂)(zHq

T
ŷqr + ZH

L

T
YL)]

=trace[(A∆M̂zHq
T
)ŷqr] + trace(A∆A)

− trace[βq(A∆M̂zHq )(z
H
q

T
M̂zHq

T
)ŷqr]

− trace[βq(A∆M̂zHq )(z
H
q

T
M̂ZH

L

T
ŷL)]

=δ + (1− αqβq)(ϕq)r − βqφq
Tϕq.

We briefly analyze the above time cost. First, for Nq candi-
dates, the total time cost of αqs is O(N2

hNq), and the follow-
ing cost for βq is O(Nq). Then for these candidates, the time
cost of γqs is O(N3

h+N2
hNq), and that of all ϕqs, φqs, ϕq

Tφqs

and φq
Tφqs is O(NhNqC+N2

hC+NqC
2). Therefore, for Nq

candidates, the time cost of their expected impact estimation
is O(N2

hNq+N3
h+NhNqC+N2

hC+NqC
2). Since Nq≥Nh≫C,

it can be simplified asO(N2
hNq). Of note, these impact values

can be computed via direct matrix operations rather than
multiple iterations.
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FLAG: Faster Learning on Anchor Graph
with Label Predictor Optimization

Weijie Fu, Meng Wang, Senior Member, IEEE, Shijie Hao, and Tingting Mu, Member, IEEE

Abstract—Knowledge graphs have received intensive research interests. When the labels of most nodes or datapoints are missing, 
anchor graph and hierarchical anchor graph models can be employed. With an anchor graph or hierarchical anchor graph, we only 
need to optimize the labels of the coarsest anchors, and the labels of datapoints can be inferred from these anchors in a coarse-to-
fine manner. The complexity of optimization is therefore reduced to a cubic cost with respect to the number of the coarsest anchors. 
However, to obtain a high accuracy when a data distribution is complex, the scale of this anchor set still needs to be large, which thus 
inevitably incurs an expensive computational burden. As such, a challenge in scaling up these models is how to efficiently estimate the 
labels of these anchors while keeping classification performance. To address this problem, we propose a novel approach that adds an 
anchor label predictor in the conventional anchor graph and hierarchical anchor graph models. In the proposed approach, the labels of 
the coarsest anchors are not directly optimized, and instead, we learn a label predictor which estimates the labels of these anchors with 
their spectral representations. The predictor is optimized with a regularization on all datapoints based on a hierarchical anchor graph, 
and we show that its solution only involves the inversion of a small-size matrix. Built upon the anchor hierarchy, we design a sparse 
intra-layer adjacency matrix over these anchors, which can simultaneously accelerate spectral embedding and enhance effectiveness. 
Our approach is named Faster Learning on Anchor Graph (FLAG) as it improves conventional anchor-graph-based methods in terms of 
efficiency. Experiments on a variety of publicly available datasets with sizes varying from thousands to millions of samples demonstrate 
the effectiveness of our approach.

Index Terms—Semi-supervised learning, graph-based learning, machine learning

F

1 INTRODUCTION

Knowledge graphs, which organize information in a struc-
tured way by describing the relationships among enti-
ties, have received much attention from both academia
and industry in the past few years [16], [17], [36]. Well-
known knowledge graph systems include Google Knowl-
edge Graph, Probase, DBPedia, YAGO, and TrueKnowledge.
In a knowledge graph, entities are denoted as nodes or
datapoints, categories are their labels, and relationships
are directed links between these datapoints [32]. Howev-
er, in most data mining applications, the labels of many
datapoints are missing, and it is often prohibitively labor-
intensive and time-consuming to collect their labels. In
contrast, the amount of unlabeled data can be huge in many
domains. Semi-Supervised Learning (SSL), which exploits
the prior knowledge from both unlabeled and labeled data,
thus attracts considerable attention to estimate the missing
labels. In recent years, various SSL methods have been
developed, such as mixture methods [6], co-training [4],
[48], semi-supervised support vector machines [7], [18], and
graph-based methods [1], [35], [53].

In this paper, we focus on Graph-based SSL (GSSL),
which is one of the most successful SSL approaches and
shows the state-of-art performance in many areas [29], [45],
[54]. In general, GSSL first constructs an adjacency graph
to capture the data distribution for all datapoints, where
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tion, Hefei University of Technology, 230009, China (E-mail: {fwj.edu,
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the weight of the edge between two nodes represents their
similarity. As a consequence, the labels for classification
can be propagated from limited labeled data to remaining
unlabeled data on the graph. This intuitive interpretation
of the label propagation also offers GSSL more expansibility
and many novel graph models have been recently proposed,
such as hypergraphs for modeling higher-order relevances
[51], and multigraphs for integrating multi-view features
[43].

Despite the success in a variety of applications, the
traditional GSSL approaches have a bottleneck in dealing
with large-scale data. They face a quadratic complexity in
graph construction. In addition, denoting N as the number
of datapoints, the optimal solution of GSSL requires the
inversion of a graph Laplacain matrix with the size N ×N
[53], which requires a computational cost of O(N3). The
costs thus become impractical for large-scale datasets.

Recent works seek to employ anchors to build fast
graph-based learning methods [23], [42], [47]. Here anchors
refer to the points that roughly cover the data distribution
in a feature space1. Specifically, these methods first estimate
the inter-layer adjacency weights between datapoints and
anchors, and then infer the labels of datapoints from these
anchors. Consequently, they reduce the scale of the matrix
inversion to the size of the anchor set and correspondingly
speed up the optimization. However, to guarantee classifi-
cation accuracies, anchors in these approaches need to be
dense when the data distribution is complex, which leads to

1Throughout the manuscript, we call the space of the raw data rep-
resentation as ”feature space”, and the one spanned by the eigenvectors
of Graph Laplacian as ”spectral space” [31].
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Fig. 1. An illustrative example of FLAG, where the labels of the coarsest anchors are first obtained based on their spectral representations with
an anchor label predictor, and then spread to datapoints in a coarse-to-fine manner with the inter-layer adjacency matrices. Note that owing to the
nonlinear spectral embedding, the linear predictor in FLAG actually corresponds to a nonlinear classification boundary in the feature space.

huge computational costs for large-scale datasets. Recently,
a hierarchical anchor graph model with a pyramid-style
structure is proposed in [41], which explores multiple-layer
anchors to perform hierarchical label inference layer by
layer. As a result, this approach can enlarge its finest anchor
layer to improve classification performance. However, since
the labels of all datapoints are essentially inferred from the
coarsest anchors, to obtain a high accuracy, the number
of these anchors still needs to be large. Like the pervious
approaches, the computational complexity for optimizing
their labels can be increasingly expensive. Therefore, these
fast anchor-based methods are still insufficiently efficient to
handle large-scale datasets with complex data distributions.

To address this issue, in this paper we develop a novel
approach called Faster Learning on Anchor Graph (FLAG),
which further scales up anchor-graph-based methods. As
illustrated in Fig.1, instead of directly optimizing the la-
bels of the coarsest anchors in hierarchical anchor graph
models2, we estimate their labels with a predictor and
optimize the predictor in a hierarchical-anchor-graph-based
regularization framework. To keep computational efficiency,
we need to employ a linear predictor with a small hypoth-
esis space. Therefore, we first design a sparse intra-layer
adjacency matrix over the coarsest anchors with anchor
hierarchy. Then we perform spectral embedding on these
anchors and build their low-dimensional but discriminative
spectral representations. In this way, the optimization can
be computed with the matrix inversion, where the matrix
size is just equivalent to the dimensionality of the spectral
representation.

The rest of this paper is organized as follows. In Section
2, we briefly review related work on graph-based learning
algorithms. In Section 3, we introduce the formulation of the
anchor-based learning framework and analyze its dilemma.
We propose our faster learning approach in Section 4. In

2Note that we may not further discriminate anchor graphs and
hierarchical anchor graphs, as anchor graph is actually just a case of
hierarchical anchor graph with an individual anchor layer.

Section 5, we make comparisons with other approaches. We
finally conclude this paper in Section 6.

2 RELATED WORK

In this section, we focus on the related work on improving
the efficiency of GSSL from two aspects, namely, graph
construction and model optimization.

To reduce the time cost in the first aspect, many fast
graph construction approaches have been developed. Chen
et al. [8] first proposed to construct an approximate kNN
graph for high-dimensional data via recursive Lanczos bi-
section. To deal with arbitrary similarity measures, Dong
et al. [10] subsequently presented a simple but efficient
solution based on local search algorithms. In [39], Wang et
al. also proposed a multiple random divide-and-conquer ap-
proach for the graph construction and additionally present-
ed a neighborhood propagation scheme to improve its effec-
tiveness. To deal with the data distributed over commodity
clusters, Goyal et al. [13] proposed a distributed online
approaches based on sketching algorithms, and introduced
it into natural language processing. Besides, Wang et al. [40]
employed parallel auction algorithms to recover a sparse
yet nearly balanced subgraph for social networks, which
significantly reduces computational costs. As a powerful
method, Approximate Nearest Neighbor Searching (ANNS)
is also used to build big graphs. For example, Zhang et
al. [49] employed Locality-Sensitive Hashing into the graph
construction. Wang et al. [41] introduced a tree-based ANNS
algorithm [30] to accelerate their weight estimation.

In spite of the progress in the fast graph construction,
most GSSL methods remain challenging due to their cubic
computational complexity in the optimization. To address
this issue, Tsang et. al [37] introduced an ϵ-insensitive con-
straint into traditional LapSVM problems [27]. As a result,
its optimization turns to a minimum enclosing ball problem
and can be solved with core vector machines [38]. However,
to obtain a satisfying accuracy, ϵ needs to be small, which
makes this method close to the original LapSVM with a
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TABLE 1
Notations and definitions

Notation Definition

G = {X ,U ,Z} A hierarchical anchor graph model, where X and U indicate the sets of datapoints and anchors, respectively,
and Z indicates the set of inter-layer adjacency edges between different sets of points.

N0 The number of datapoints.
C The number of classes.
l The number of labeled datapoints.
h The number of anchor layers.

Lb
The bth layer in the pyramidal graph structure, where L0 is the layer of raw data and Lb(b ≥ 1) denotes
the b-th anchor layer.

Nb The number of anchors in Lb(b ≥ 1).
Za,b The inter-layer adjacency matrix between La and Lb.
Za,b

is The inter-layer adjacency weight between point i in La and point s in Lb.
W The intra-layer adjacency matrix over all datapoints.
Λ The diagonal matrix of the degrees of the finest anchors.
A The soft label matrix of the coarsest anchor set.
F The soft label matrix of the datapoint set.
YL The class indicator matrix on labeled datapoints.
L̃ The reduced Laplacian matrix in regularization.
ZH The cascaded inter-layer adjacency matrix of a hierarchical anchor graph.
P̃ The linear label predictor on the spectral representation.
W̃ The intra-layer adjacency matrix over the coarsest anchors.
Σ The diagonal matrix of the degrees of the coarsest anchors.
Ũ The the spectral representations of the coarsest anchors.

huge cost. Chen et al. [9] presented a method to combine an
original kernel with the adjacency graph for scalable mani-
fold regularization, whose cost is still larger than square in
practice. Meanwhile, since the above algorithms are mere-
ly designed for binary classification, they can only learn
individual classifiers for different classes. Benefitting from
the development of parallel computation platforms, such as
Mapreduce, many parallel algorithms are also proposed to
accelerate the model optimization [2], [26], [33].

More recent works seek to employ anchors for scaling up
graph-based learning, which can reduce the computational
costs of both the graph construction and the model opti-
mization. Zhang et al. [46], [47] first suggested employing
a set of anchors to perform a low-rank approximation of
a data distribution and span an effective model for label
reconstruction. However, since it requires a dense weight
matrix to build the relationships between each datapoint
and all anchors, its storage requirement becomes impractical
for large-scale datasets. Liu et al. [23], [24] then presented
anchor graph models by constructing the inter-layer edges
between datapoints and their nearby anchors. Besides, they
also introduced a geometric reconstruction method for their
weight estimation to improve its effectiveness. In [42], Wang
et al. improved the efficiency of the reconstruction problem
by introducing a new constrict, and alternatively proposed
to build an intra-layer adjacency matrix over anchors rather
than datapoints. Nevertheless, to obtain a reasonable accu-
racy, a large-size anchor set is required. As a consequence,
the computational costs of the geometric reconstruction and
the model optimization can be expensive. Wang et al. [41]
therefore extended anchor graph models into a pyramid-
style structure by exploring multiple anchor sets, which can
improve the classification accuracy by introducing a finer
anchor set while fixing the size of the coarsest anchor set.
As a result, it carries out hierarchical label inference from

the coarsest anchors in a coarse-to-fine manner, and its
optimization only involves the inversion of a matrix with
the size of the coarsest anchor set. Although the size of this
coarsest anchor set can be forced to be small for a lower
complexity, the classification performance will accordingly
become worse. To obtain a high accuracy, the number of
these anchors still need to be relatively large, and the time
cost can be expensive.

3 ANCHOR-GRAPH-BASED LEARNING

In this section, we first review the traditional fast learning
approaches built upon anchor graph and hierarchical anchor
graph models, and then make an analysis on their dilemma.
For convenience, some important notations used through-
out the paper and their explanations are listed in Table 1.

Given a dataset X = {x1;x2; . . . ;xN0} ∈ RN0×D with
the first l samples being labeled from C distinct classes,
these approaches aim at classifying the remaining unlabeled
data according to their dependence on a hierarchical anchor
graph. For this purpose, multiple sets of representative
anchors Ub ∈ RNb×D(b = 1, . . . , h) with fine-to-coarse sizes,
namely N1 > · · · > Nh, are first generated. These anchors
can be obtained by a clustering process or a random selec-
tion [23]. Then suppose the raw datapoint set locates at the
bottom layer (L0) of the pyramid, and the remaining layers
(Lb, b = 1, . . . , h) are all composed of multiple anchor sets.
A hierarchical anchor graph can be constructed by linking
all these layers up to a pyramid-style structure with the
inter-layer adjacency matrices between neighboring layers,
represented by {Z0,1, . . . ,Zh−1,h}.

For simplicity, we first consider the inter-layer adjacency
matrix between the datapoint set in L0 and the finest anchor
set in L1, namely Z0,1 ∈ RN0×N1 . The entries in the i-th row
of this matrix are the weights between the i-th datapoint and
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Fig. 2. The toy examples with increasing complexities of data distributions. For each datapoint, we only show its inter-layer adjacency edge with the
largest weight in the corresponding anchor graph (h = 1). Note that we increase N1 by 2, 22, . . . , until all the edges are ”reliable”. As we can see,
compared with Gaussian data (a), when data distributions become more complex (b-c), more anchors are needed to build the ”reliable” inter-layer
adjacency edges between datapoints and anchors in the same class.

its nearest anchors in L1, which can be determined by the
kernel regression [12]:

Z0,1
is =

Kδ(xi,us)∑
s′∈⟨i⟩ Kδ(xi,us′)

∀s ∈ ⟨i⟩, (1)

where δ is the bandwidth of the Gaussian kernel, and the
notation ⟨i⟩ ⊆ [1 : N1] denotes the indices of the k closest
anchors of xi. Then we can conduct the similar kernel
regression procedure to estimate the remaining inter-layer
adjacency matrices. That is, to obtain Zb−1,b between two
neighboring anchor layers, we have:

Zb−1,b
is =

Kδ(ui,us)∑
s′∈⟨i⟩ Kδ(ui,us′)

∀s ∈ ⟨i⟩, 1 < b ≤ h

(2)
where ui is the i-th anchor in Lb−1 and us denotes the
s-th anchor in Lb. In practice, for large-scale datasets, we
can speed up the adjacency matrix estimation with ANNS
techniques [30]. As such, the time cost of hierarchical anchor
graph construction can be reduced to O(N0logN1D).

Let A = [a1;a2; . . . ;aNh
] ∈ RNh×C denote the opti-

mized label matrix of the coarsest anchor set in Lh. With
the anchor hierarchy, the label matrix of the datapoint set
F ∈ RN0×Ccan be inferred from this anchor set in a coarse-
to-fine manner:

F = Z0,1(. . . (Zh−1,hA)) = ZHA, (3)

where ZH denotes the cascaded inter-layer adjacency matrix
between the data layer and the coarsest anchor layer. As
pointed in [41], this adjacency matrix naturally introduces
adaptive inter-layer adjacency relationships between each
datapoint and its nearby coarsest anchors.

Meanwhile, an intra-layer adjacency matrix over data-
points, represented by W, can be obtained based on the
inter-layer adjacency weights between L0 and L1:

W = Z0,1Λ−1Z0,1T ∈ RN0×N0 , (4)

where Λ is a diagonal matrix with Λss =
∑N0

i=1 Z
0,1
is . As we

can see that, Wij > 0 means two datapoints share at least
one finest anchor.

Let YL = [y1; . . . ;yl] ∈ Rl×C denote the class indicator
matrix on labeled datapoints, where yir = 1 if xi belongs

to class r, and yir = 0 otherwise. To deal with a standard
multi-class SSL problem, Hierarchical Anchor Graph Reg-
ularization (HAGR) [41] is formulated by minimizing the
following problem:

QA =
l∑

i=1

∥ ZH
i·A− yi ∥

2
+

λ

2

N0∑
i,j=1

Wij∥ ZH
i·A− ZH

j·A ∥2

= ∥ZH
LA−YL∥

2

F + λtr(ATZHT
(I−W)ZHA)

= ∥ZH
LA−YL∥

2

F + λtr(ATL̃A),
(5)

where ∥ · ∥F stands for the Frobenius norm, λ is the trade-
off parameter balancing different terms, ZH

L is the labeled
part of ZH, and

L̃ = ZHT
ZH − ZHT

Z0,1Λ−1Z0,1TZH ∈ RNh×Nh . (6)

With the native spare matrix multiplication [44], the cost of
Eq.6 scales as O(N0Nhk) , as all the inter-layer adjacency
matrices in ZH, namely Zb−1,bs, are k-sparse.

Differentiating QA with respect to A and setting it to
zero, we can obtain an optimal solution in the closed-form:

A = (ZH
L

T
ZH

L + λL̃)
−1

ZL
TYL. (7)

Evidently, this matrix inversion takes a cost of O(Nh
3),

namely, a cubic cost with respect to the number of the
coarsest anchors.

Note that when the above hierarchical anchor graph
model becomes an anchor graph with an individual anchor
layer, namely h = 1, HAGR degrades to the Anchor Graph
Regularization (AGR) method [23].

The above fast anchor-based approaches have shown
their promising results for large-scale SSL. However, accord-
ing to Eq.3, the effectiveness of the label inference highly de-
pends on the distribution of the coarsest anchors. To obtain
a high accuracy, the cascaded inter-layer relationships are
supposed to be ”reliable”, namely, connections only exist
between the datapoints and the coarsest anchors within
the same class. For this purpose, when a data distribution
becomes more complex, the required number of the coarsest
anchors will increase dramatically. To make it intuitive,
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Figs.2a-2c illustrate this observation by increasing the com-
plexity of the data distribution (for simplicity, we construct
anchor graphs with h=1). As we can see, to build ”reliable”
inter-layer edges, two anchors are sufficient for the example
in Fig.2a. However, for the examples in Fig.2b-2c, more
anchors are clearly needed. According to Eq.7, it can lead
to a large computational burden in the model optimization
[41]. In summary, since a large-size coarsest anchor set is
required for obtaining a high accuracy, AGR and HAGR
still face a dramatic increase of the computational cost for
optimizing their labels.

4 FASTER LEARNING ON ANCHOR GRAPH(FLAG)
To address the above issue, we propose the FLAG model.
It employs a label predictor on the spectral representations
of the coarsest anchors to estimate their labels, which is op-
timized in a regularization framework over all datapoints.
We first propose the formulation of learning with an anchor
label predictor in Section 4.1. We introduce the efficient
estimation of spectral representations by employing a sparse
intra-layer adjacency matrix over anchors in Section 4.2. The
complete FLAG model and its optimization are presented in
Section 4.3, followed by a complexity analysis in Section 4.4.

4.1 Learning with Label Predictor Optimization
Instead of directly optimizing the labels of the coarsest
anchors, we estimate the labels of these anchors with a label
predictor. Let U = [u1; . . . ;uNh

] ∈ RNh×D denote the raw
representation of the coarsest anchor set. Then based on the
anchor label predictor p : RD → RC , the soft label matrix
of this anchor set can be obtained as [p(u1); . . . ; p(uNh

)] ∈
RNh×C . Note that in HAGR, p(U) = A.

Recall a standard multi-class SSL problem, where a set
of labeled datapoints xi (i = 1, . . . , l) with the corre-
sponding discrete labels yi ∈ {1, . . . , C} is given and the
goal is to estimate the labels of the remaining unlabeled
datapoints. Let Yl = [y1;y2; . . . ;yl] ∈ Rl×C denote the
class indicator matrix of the labeled data with Yij = 1 if
xi belongs to class j and Yij = 0 otherwise. Meanwhile,
similar to HAGR, we denote W as the intra-layer adjacency
matrix over datapoints, and ZH as the cascaded inter-layer
adjacency matrix of a hierarchial anchor graph. Then, the
regularization framework of learning with an anchor label
predictor can be formulated as the following minimization
problem:

argminpQp =
l∑

i=1

∥ZH
i·p(U)− yi∥

2

F + µΩ(p)

+
λ

2

N0∑
i,j=1

Wij∥ZH
i·p(U)− ZH

j·p(U)∥2
F
.

(8)

where Ω(·) denotes a regularizer on the label predictor,
and µ is the corresponding trade-off parameter. As a result,
compared with HAGR where a large number of soft labels
need to be learned, Eq.8 only needs to optimize a label
predictor.

However, the raw representation in the feature space
is usually insufficiently powerful to capture the similarity
between anchors, and may lead to a poor performance

for the following label prediction. Therefore, there are two
issues left: (1). how to get effective representations of these
coarsest anchors, and (2). how to optimize the correspond-
ing predictor with a faster solution. We address them in
Section 4.2 and 4.3, respectively.

4.2 Efficient Estimation of Spectral Representations

In this section, we introduce how to efficiently estimate a
discriminative representation of the coarsest anchor set via
spectral embedding.

For this purpose, we first consider the issue of construct-
ing an intra-layer adjacency matrix W̃ over the coarsest an-
chors, aiming at performing an efficient spectral embedding
procedure on these anchors while improving effectiveness.
Although there exists a similar method for building the
adjacency relationships between these anchors based on
an anchor graph [42], our intra-layer adjacency matrix is
actually quite different.

First, we determine the relationships of the coarsest
anchors with the anchor hierarchy if a hierarchical anchor
graph consists of multiple anchor layers. In particular, we
employ the cascaded inter-layer adjacency matrix ZH to es-
timate the intra-layer weight between the coarsest anchors:

W̃ij =
N0∑
s=1

ZH
siZ

H
sj . (9)

According to Eq.9, once two coarsest anchors share at least
one common datapoint based on the cascaded inter-layer
adjacency relationships, there will be an intra-layer adjacen-
cy edge between them. Meanwhile, if a hierarchical anchor
graph only contains an individual anchor layer, this step
degrades to the same situation in [42].

The above adjacency relationships can also be expressed
in a matrix form:

W̃ = ZHT
ZH ∈ RNh×Nh . (10)

which can be efficiently computed in O(N0Nhk).
Second, we impose a strict sparse constraint on the above

intra-layer adjacency matrix. Since Eq.10 accumulates all
the nonnegative intra-layer adjacency weights, the obtained
adjacency matrix is usually dense, which will slow down
the spectral embedding. Therefore, we further prune this
intra-layer adjacency matrix by forcing it to be k-sparse:

W̃ij =

{
W̃ij if uj and ui are ”close”,
0 otherwise.

(11)

where we define the closeness according to their accumu-
lated adjacency weights rather than the Euclidean distance.
Practically, we first retain the adjacency edges with the k
largest weights for each coarsest anchor, and then make
them undirected. We can thus obtain a sparse and symmet-
ric adjacency matrix, where only the elements correspond-
ing to the anchors with large correlations are reserved.

When two coarsest anchors are close to a classifica-
tion boundary but locate at different classes, the above
pruning operation can remove their intra-layer adjacency
relationship and accordingly improve the effectiveness of
the intra-layer adjacency matrix. It is understandable that,
as the data density between different classes is much lower
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than that within the same class, the accumulated intra-layer
adjacency weight of this suspicious adjacency edge tends to
be much smaller than those within the same class. In the
experimental section, we will compare the above intra-layer
adjacency matrix with the one built upon the RBF kernel
under the different settings of graph structures.

Now we look back to the remaining issue of performing
the spectral embedding on the coarsest anchors to obtain
their representations in a spectral space. Donate Σ as a
diagonal degree matrix with Σii =

∑Nh

j=1 W̃ij . Then the
embedding can be formulated as

argmin
∑
ij

W̃ij ||
ũi√
Σii

− ũj√
Σjj

||
2

, (12)

where ũi is the spectral representation of the coarsest anchor
ui. According to Eq.12, a pair of anchors with a small
intra-layer adjacency weight will have dissimilar spectral
representations, and otherwise, their representations tend
to be similar.

Let Ũ = [ũ1; . . . ; ũNh
] ∈ RNh×d denote the optimized d-

dimensional representation of the coarsest anchor set, where
each row is the spectral representation of a coarsest anchor.
Meanwhile, denote S = Σ− 1

2W̃Σ− 1
2 as the normalized

intra-layer adjacency matrix over the coarsest anchors. Then
the spectral-representation matrix Ũ can be obtained ac-
cording to the following optimization problem:

argminŨŨT(I− S)Ũ

s.t.ŨTŨ = I
(13)

which is solved by combing the d smallest eigenvectors of
the matrix (I− S) [31]. Based on Arnoldi technique [21],
the time cost of calculating the first d eigenvectors via Eq.13
scales as O(Nhkd), where k is the average number of non-
zero entries in each column of this matrix. Of note, the first
eigenvectors reflect the main structure of data distributions,
and the remaining ones indicate the small difference or the
noise. As a result, we can obtain the discriminative spectral
representation of this coarsest anchor set with a small num-
ber of eigenvectors, which insures its low dimensionality.

When the intra-layer adjacency matrix over the coarsest
anchors is ”ideal” (which means the coarsest anchors in
different classes have zero weights with each other, and
those within the same class have large weights with each
other), we can employ their spectral representations with C
eigenvectors for C-classes, namely, we have d = C. Even
this adjacency matrix is noisy in most real-world applica-
tions and more eigenvectors are required, the dimensional-
ity of the spectral representations can still be much smaller
than the size of the anchor set. Later in the experimental
section, we will empirically show both the effectiveness and
efficiency of the low-dimensional spectral representations .

Note that one can also conduct spectral embedding on
the datapoint set or another finer anchor set in a hierar-
chical anchor graph. Nevertheless, it will lead to a larger
computational cost for constructing the corresponding intra-
layer adjacency matrix and also slow down the spectral
embedding. On the contrary, the spectral representations of
the coarsest anchors can be efficiently computed. Besides,
as these anchors can roughly cover the data distribution,

based on the corresponding intra-layer adjacency matrix,
their spectral representations can still be discriminative .

4.3 Faster Optimization with a Linear Predictor
So far we have described how to efficiently estimate the
spectral representations of the coarsest anchors. Now we in-
tegrate these spectral representations into the regularization
framework on a hierarchical anchor graph, and propose the
complete FLAG model with a faster optimization.

Let p̃ : Rd → RC denote the label predictor on the spec-
tral representation of the coarsest anchor set Ũ ∈ RNh×d.
The label matrix of this anchor set can be obtained as
p̃(Ũ) ∈ RNh×C . To keep computational efficiency, we only
consider a linear predictor, represented by P̃. As such, we
can obtain the soft label matrix of the coarsest anchor set:

A = ŨP̃ ∈ RNh×C . (14)

Of note, benefitting from the nonlinear embedding, this
simple label predictor can still classify the coarsest anchors
with a complex distribution in the feature space.

Then the label matrix on datapoints can be inferred by

F = ZHŨP̃, (15)

where ZH is the cascaded inter-layer adjacency matrix in
hierarchical anchor graph models. Compared with pervious
anchor-based methods [23], [42], [41], to eventually estimate
the labels of unlabeled datapoints, we only need to optimize
the above anchor label predictor, of which the size is propor-
tional to the dimensionality of the spectral representation
rather than the number of the coarsest anchors.

Now, by integrating the above linear label predictor into
the previous regularization framework, Faster Learning on
Anchor Graph (FLAG) can be finally formulated as the
following optimization problem:

argminp̃Qp =
l∑

i=1

∥ZH
i·ŨP̃− yi∥

2
+ µ||P̃||2F

+
λ

2

N0∑
i,j=1

Wij∥ZH
i·ŨP̃− ZH

j·ŨP̃∥2.
(16)

Denoting ZH
L as the labeled part of ZH, we can rewrite

Eq.16 into the matrix form:

QP̃ = ∥ZH
L ŨP̃−YL∥

2

F + µtr(P̃TP̃)

+ λtr(P̃TŨTZHT
(I−W)ZHŨP̃)

= ∥ZH
L ŨP̃−YL∥

2

F + µtr(P̃TP̃) + λtr(P̃TL̃P̃),

(17)

where L̃ is the reduced Laplacian over the spectral repre-
sentation:

L̃ = ŨTZHT
(I− Z0,1Λ−1Z0,1T

)ZHŨ ∈ Rd×d

= ŨTZHT
ZHŨ− ŨTZHT

Z0,1Λ−1Z0,1T
ZHŨ.

(18)

With simple algebra, the optimization of the label pre-
dictor can be computed with a matrix inversion procedure:

P̃ = (ŨTZH
L

T
ZH

L Ũ+ µI+ λL̃)
−1

ŨTZH
L

T
YL, (19)

where the matrix size is equivalent to the dimensionality of
the spectral representation d. Compared with HAGR which
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TABLE 2
Comparison of time complexity of five graph-based methods.

Methods Graph Construction Model Optimization
LLGC O(N0logN0D) O(N3

0 )
AGR, EAGR O(N0logN1D) O(N0N1k +N3

1 )
HAGR O(N0logN1D) O(N0Nhk +N3

h)
FLAG O(N0logN1D) O(N0Nhk +Nhdk +Nhd

2)
Note that for each method, we have N0 > N1 > Nh ≫ d.

optimizes all the labels of the coarsest anchors via Eq.7, the
computation of Eq.19 can be more efficient, as d is practically
much smaller than the size of the coarsest anchor set Nh.

Based on the optimized predictor, the soft label matrix
on datapoints F can be estimated by Eqs.14-15. Finally, we
can obtain a hard label for any unlabeled datapoint:

ŷi = argmaxr∈{1,...,c}
Fi,r

βr
, i = l + 1, . . . , Nx, (20)

where βr = 1TF·r is a normalization factor [53], and F·r is
the rth column of F.

4.4 Complexity Analysis
In this section, we summarize the steps of the proposed
approach and analyze their time complexities.

(1). Compute inter-layer adjacency matrices to build a
hierarchical anchor graph with Eqs.1-2, and construct a
sparse intra-layer matrix over the coarsest anchors with
Eqs.9-11. The computational cost of the former scales as
O(N0logN1D), and the latter is O(N0Nhk).

(2). Estimate the spectral representations of the coarsest
anchors with d eigenvectors, whose cost scales as O(Nhdk).

(3). Calculate the reduced Laplacian in Eq.18 with
O(N0kd + Nhd

2), and carry out the graph regularization
via Eq.19 with O(d3).

(4). Predict the labels of the coarsest anchors with Eq.14
in O(NhdC), and infer the labels of datapoints based on
Eq.15 in a coarse-to-fine manner, which scales as O(N0kC).

Since we usually have Nh ≫ d ≫ C, the total time
complexity of FLAG can be simplified to

O[N0(logN1D +Nhk) +Nhd(k + d)].

Table 2 lists the time complexities of LLGC (Learning
with Local and Global Consistency [50], a typical graph-
based SSL method), AGR, EAGR ( [42], an improved AGR
method), HAGR, and FLAG, in which the ANNS-based
kernel regression [41] is applied into all these methods for
a fair comparison. From the table we can observe that,
although LLGC reduces its graph construction to a linear
complexity with respect to the data size, it still faces a cubic
cost for its matrix inversion during the optimization. To
obtain a high accuracy with more anchors, AGR and EAGR
also face a dramatic increase of the computational cost in
their model optimization. Then we focus on HAGR and
our FLAG. As both of them have the same procedures of
computing a series of inter-layer matrices and an intra-layer
adjacency matrix (in HAGR means the first term in Eq.6),
the comparison of the complexities comes from their rest

parts. As we can see from Eq.18 and Eq.6, the remaining
costs of calculating the reduced Laplacian in FLAG and
HAGR are O(N0kd + Nhd

2) and O(N0Nhk), respectively.
Meanwhile, rather than conducting the matrix inversion
with a cost of O(N3

h), FLAG implements a spectral embed-
ding procedure with a linear complexity of O(Nhdk) on the
pruned adjacency matrix, and its optimization only involves
the matrix inversion on a d × d matrix with a cubic cost of
O(d3). Since d and k are much smaller than Nh, we have
O(N0kd + Nhkd + Nhd

2 + d3) ≪ O(N0Nhk + N3
h). As a

result, FLAG has a much less cost than HAGR and other
conventional fast learning approaches, and can efficiently
deal with large-scale datasets with more coarsest anchors.

5 EXPERIMENT

Now we investigate both the effectiveness and efficiency
of FLAG on real-world datasets. All the experiments are
implemented on a PC with E5-2620 v2 @2.10 GHz and 64G
RAM. Here we use the following five datasets with sizes
varying from thousands to millions. The descriptions of
these datasets are given in below, and some statistics of them
are listed in Table 3.

(1) FaceMIT: The FaceMIT data set [3] contains 6,977
training samples (2,429 positives, 4,548 negatives) and
24,045 testing samples (472 positives, 23,573 negatives). In
our experiment, we only employ the training set for binary
classification.

(2) Newsgroup: A tiny version of the 20newsgroups data,
with binary occurance data for 100 words across 16,242
postings. It is tagged the postings by the highest level
domain in the array ’newsgroups’ [34].

(3) Extended MNIST: This dataset is widely used in many
large-scale graph-based works [14], [19], [24]. The original
MNIST dataset contains 70,000 samples of handwritten dig-
its from ’0’ to ’9’ [20]. Each of the ten classes contains about
7,000 samples, which are images centered in a 28×28 field
by computing the center of mass of the pixels. This extended
dataset is constructed by translating the original images in
MNIST one pixel in each direction. As a result, there are
630,000 samples in 900 dimensions by using the normalized
grayscale values as features.

(4) Extended USPS: The USPS dataset is for hand-written
digits recognition and contains 7,291 training samples and
2,007 test samples of digit images. All the digits in the
training set of USPS are extended by shifting the 16 × 16
images in all directions for up to five pixels [38]. There are
882,211 samples in 676 dimensions in total. We directly use
the normalized grayscale values as features.
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TABLE 3
Details of the five databases used in our experiments.

FaceMIT Newsgroup Extended MNIST Extended USPS MNIST8M
# of instances 6,977 16,242 630,000 882,211 8,100,000
# of categories 2 4 10 10 10
# of dimensions 361 100 900 676 784

(5) MNIST8M: This dataset has been used in [15], [22],
[25] to verify the efficiency of large-scale learning algorithm-
s. It contains totally 8,100,000 samples in 784 dimensions.

For convenience, these datasets are categorized into
small, medium and large sizes. Specifically, we regard
FaceMIT, and Newsgroup as small-size datasets, Extended
MNIST, and Extended USPS as medium-size datasets, and
MNIST8M as a large-size dataset.

5.1 Comparison to State-of-the-art Approaches

We compare FLAG with several state-of-the-art fast learning
approaches, such as AGR, EAGR and HAGR, to demon-
strate its efficiency and effectiveness. We also report the
performances of two baseline methods including 1NN, and
linear SVM. The methods for comparison are described in
below.

(1) 1NN: It determines the label of an instance by refer-
ring to its nearest datapoint in the labeled set.

(2) LSVM [11]: We use the Linear SVM implementation
from LIBLINEAR, which is a library for large-scale linear
classification.

(3) LLGC [50]: This typical graph-based method directly
optimizes the labels of datapoints. In our experiments, we
employ a kNN strategy for its graph construction.

(4) AGR-N1 [23]: It is the original anchor-graph-based
learning method with an individual anchor layer (h = 1),
where N1 is the number of anchors. Of note, this method
can be viewed as a reduced version of HAGR.

(5) EAGR-N1 [42]: Compared with AGR-N1, it remodi-
fies the regularizer by constructing a smoothness constraint
on the labels of anchors.

(6) FLAG-N1: Compared with AGR-N1, it first imposes
a strict sparse constraint on the intra-layer adjacency matrix
over anchors to obtain their spectral representations, and
then introduces a linear predictor to estimate the labels of
these anchors. As a simplest version of the FLAG method,
it is proposed to verify the efficiency of learning an an-
chor label predictor for small-size datasets and show the
effectiveness of adding a finer anchor layer for larger-size
datasets.

(7) HAGR-N1-. . .-Nh [41]: This HAGR approach is built
upon a hierarchical anchor graph with h(h > 1) anchor
layers, where Nb(b = 1, . . . , h) denotes the scale of the b-th
anchor layer. Compared with method (4), it infers the labels
of datapoints in a coarse-to-fine manner.

(8) FLAG-N1-. . .-Nh: Different from method (7), it inte-
grates an anchor label predictor with the hierarchial label
inference to estimate the labels of datapoints. Meanwhile,
compared with method (6), the spectral representations of
the coarsest anchors here are obtained based on their sparse
intra-layer adjacency matrix, which is built upon the anchor

hierarchy. This approach is designed for classification on
medium-size and large-size datasets.

For a fair comparison, the kernel widths (δ) in above
approaches are set by cross validation, and the trade-off
parameters (λ and µ) are tuned to their optimal values.
Besides, we empirically choose sparse parameters (k) from
2 to 6 for all approaches.

5.1.1 Small-Size Datasets
We first conduct experiments on FaceMIT and Newsgroup.
As the sizes of these datasets are small, we only build anchor
graphs with an individual anchor set, where N1=2,000 and
N1=3,000 are used for FaceMIT and Newsgroup, respec-
tively. We perform FLAG on these anchor graphs with the
optimized d chosen from 1 to 30. We vary the number
of labeled samples in {2, 4, . . . , 10} per class. The average
classification accuracies over 20 trials are reported in Table 4
and 5, where the time costs with 10 labels per class are listed
at the last column.

From the tables, we obtain the following observations.
First, the accuracies of all graph-based SSL approaches stay
at a higher level than those of LSVM and 1NN, especially
when the number of labeled datapoints is small, which
demonstrates the importance of leveraging unlabeled data
in SSL. Second, benefitting from anchor-based label infer-
ence, both AGR-N1 and EAGR-N1 reduce the time cost to
a much lower level than LLGC. However, compared with
LLGC, their classification accuracies can be worse in some
cases. Third, FLAG-N1 performs SSL with the smallest time
cost, and consistently obtains higher accuracies than other
three approaches. These results demonstrate the superiority
of FLAG-N1 for scaling up graph-based learning.

5.1.2 Medium-Size Datasets
For two medium-size datasets, we first follow [23] and
perform PCA to reduce the original image dimensions to
86. Then for each of them, we construct two anchor graphs
with N1 =5,000 and N1=20,000, and one hierarchical anchor
graph with N1=200,000, N2=20,000. We perform FLAG on
these graphs with the optimized d chosen from 10 to 300.
The number of labeled samples varies from {2, 4, . . . , 10}
and {20, 40, . . . , 100} per class for Extended MNIST and
Extended USPS, respectively. The average classification ac-
curacies over 20 trials are shown in Table 6 and 7, and the
time costs are reported at the last column.

From the results in these tables, the following observa-
tions can be made. First, compared with other approaches
under the same anchor configurations, FLAG consistent-
ly obtains better performances with less time costs. This
result demonstrates both the efficiency and effectiveness
of our label predictor optimization. Second, anchor-graph-
based approaches with N1 =20,000 almost obtain higher
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TABLE 4
The comparison of different approaches on FaceMIT.

Num of labels per class 2 4 6 8 10 Time cost (in second)
1NN 55.36±10.66 64.91±10.26 68.29±7.45 68.92±5.59 72.36±5.45 0.03
LSVM 50.21±16.32 56.73±15.82 64.44±14.44 69.35±10.18 73.72±9.40 0.11
LLGC 71.43±12.23 83.37±8.85 85.36±4.59 88.11±4.56 89.62±3.73 8.96
AGR-2,000 68.06±14.18 77.65±10,81 82.18±5.86 86.86±5.18 87.60±5.88 0.85
EAGR-2,000 66.11±14.23 79.18±9.58 83.37±6.50 85.31±5.97 88.66±4.31 0.76
FLAG-2,000 80.43±14.41 86.06±10.19 90.28±3.78 91.33±1.68 91.96±1.90 0.54

The best results are shown in bold. The last column shows time costs with 10 labeled data per class.

TABLE 5
The comparison of different approaches on Newsgroup.

Num of labels per class 2 4 6 8 10 Time cost (in second)
1NN 33.30±6.12 37.26±5.69 39.46±5.65 40.57±6.03 40.91±5.61 0.04
LSVM 40.42±5.77 48.07±3.86 53.32±4.29 57.26±4.44 60.43±3.09 0.01
LLGC 52.12±6.67 57.48±3.75 59.85±2.92 60.02±3.23 61.41±2.42 85.73
AGR-3,000 54.55±3.70 59.93±5.48 61.79±3.72 62.82±3.21 63.91±2.85 1.98
EAGR-3,000 54.36±6.86 59.39±6.55 61.67±4.39 62.69±3.00 63.21±2.69 1.85
FLAG-3,000 60.28±7.06 66.43±3.01 68.80±2.01 69.01±1.62 69.67±1.67 1.33

The best results are shown in bold. The last column shows time costs with 10 labeled data per class.

TABLE 6
The comparison of different approaches on Extended MNIST.

Num of labels per class 2 4 6 8 10 Time cost (in second)
1NN 42.21±3.45 49.11±3.26 54.55±2.85 57.56±2.16 60.04±1.70 2.56
LSVM 45.74±2.49 51.96±3.13 56.44±2.65 59.78±2.77 61.79±1.96 3.15
AGR-5,000 79.47±2.20 83.11±1.89 85.77±2.20 87.53±0.95 88.53±0.82 7.98
EAGR-5,000 79.76±1.86 83.82±1.91 86.92±1.37 88.72±0.60 89.48±0.73 7.24
FLAG-5,000 85.15±2.70 89.27±3.00 91.24±1.59 92.40±0.39 92.57±0.29 5.81
AGR-20,000 79.15±2.49 84.05±2.60 86.90±1.82 89.27±1.35 90.17±1.31 151.62
EAGR-20,000 79.18±2.51 84.41±2.26 87.52±1.64 89.98±1.10 90.86±1.10 150.04
FLAG-20,000 81.66±3.21 89.48±2.61 91.36±1.67 93.17±0.93 94.05±0.24 7.91
HAGR-200,000-20,000 83.01±2.18 87.46±1.93 90.04±1.42 91.66±0.92 92.62±0.46 156.83
FLAG-200,000-20,000 87.78±1.97 92.42±1.83 94.01±1.38 95.02±0.39 95.07±0.34 14.98

The best results are shown in bold. The last column shows time costs with 10 labeled data per class.

TABLE 7
The comparison of different approaches on Extended USPS.

Num of labels per class 20 40 60 80 100 Time cost (in second)
1NN 45.94±1.38 56.58±0.52 62.03±0.58 66.40±0.56 69.25±0.51 3.65
LSVM 22.57±1.40 24.73±1.01 25.55±0.52 26.94±0.59 27.52±1.19 4.75
AGR-5,000 73.13±1.37 78.98±0.82 81.48±0.83 83.61±0.45 84.63±0.32 9.49
EAGR-5,000 76.19±1.38 82.29±0.59 83.63±0.69 85.90±0.48 86.58±0.40 8.65
FLAG-5,000 80.40±1.83 84.84±0.23 86.12±0.63 87.01±0.48 87.70±0.24 7.35
AGR-20,000 75.69±1.01 81.57±1.42 83.92±1.61 86.35±0.75 87.20±0.48 159.90
EAGR-20,000 77.61±1.27 84.09±0.95 86.11±0.67 88.18±0.44 88.89±0.27 158.48
FLAG-20,000 80.55±1.55 86.39±0.84 88.22±0.80 89.87±0.65 90.71±0.44 21.87
HAGR-200,000-20,000 79.92±1.08 85.87±0.96 87.85±0.59 89.78±0.66 90.65±0.71 167.68
FLAG-200,000-20,000 84.71±1.50 89.52±0.41 90.68±0.40 91.53±0.33 92.07±0.48 28.91

The best results are shown in bold. The last column shows time costs with 100 labeled data per class.
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TABLE 8
The comparison of different approaches on MNIST8M.

Num of labeled per class 2 4 6 8 10 Time cost (in second)
1NN 41.80±3.44 51.89±3.58 56.15±2.41 59.57±2.14 61.87±1.28 35.13
LSVM 45.08±4.19 54.69±2.45 56.23±2.52 59.50±1.45 61.66±1.19 39.82
AGR-5,000 76.53±4.15 81.99±2.98 83.22±1.66 83.94±1.94 85.02±1.48 81.26
EAGR-5,000 79.46±4.02 84.84±4.02 86.63±2.39 87.24±2.87 88.48±1.59 80.09
FLAG-5,000 81.25±4.40 86.92±1.36 89.14±1.63 89.77±1.25 90.72±0.90 76.25
AGR-30,000 79.50±3.57 86.83±3.14 89.26±2.39 89.92±1.96 90.54±0.97 663.75
EAGR-30,000 79.77±3.19 87.17±2.45 89.64±1.93 90.27±1.25 90.91±0.89 661.31
FLAG-30,000 81.55±4.11 87.51±2.63 89.84±1.44 90.46±1.47 91.85±0.89 102.41
HAGR-300,000-30,000 83.24±3.89 88.29±1.86 89.87±1.79 90.73±1.45 91.96±1.09 705.68
HAGR-300,000-30,000-5,000 82.27±3.74 87.50±2.07 89.39±2.27 90.32±1.78 91.49±1.16 137.15
FLAG-300,000-30,000 85.84±4.21 91.12±1.92 92.24±1.19 92.77±0.69 93.40±0.20 134.58

The best results are shown in bold. The last column shows time costs with 10 labeled data per class.

accuracies than those with N1=5,000, which shows the
importance of employing a large anchor set. Third, by
adding a larger anchor layer, HAGR-200,000-20,000 achieves
higher classification accuracies than AGR-20,000. However,
its performances are only comparable or even worse than
those of FLAG-5,000 on Extended MNIST and FLAG-20,000
on Extended USPS. Forth, based on the anchor hierarchy,
FLAG-200,000-20,000 improves its adjacency relationships
and consistently outperforms all other methods with the
efficient implementation.

5.1.3 Large-Size Dataset
We further test the scalability of FLAG on a large-size
dataset, namely MNIST8M. In particular, we build two
anchor graphs with N1=5,000 and N1=30,000. Besides, we
construct two hierarchical anchor graphs with N1=300,000,
N2=30,000 and N1=300,000, N2=30,000, N3=5,000. By re-
peating the similar evaluation process, we report the av-
erage classification accuracies over 10 trials in Table 8.

Similar to the results of the above experiments, we can
see that, based on the same anchor configuration, FLAG
consistently outperforms other fast learning approaches
with different numbers of labeled samples in terms of both
the efficiency and effectiveness. We also observe that, by
adding a small anchor layer, the time cost of HAGR-300,000-
30,000-5,000 is much smaller than that of HAGR-300,000-
30,000. However, the former sacrifices the accuracy at the
same time, and even results in slightly worse performances
than FLAG-30,000. In contrast, FLAG-300,000-30,000 obtains
much higher accuracies with less time costs.

It is worthwhile to note that in all the experiments above,
the accuracy of FLAG is much higher than that of HAGR
with the same graph structure, especially when the number
of the labeled data is small. The main reason is that, the
HAGR classifier employs the coarsest-anchor-based coding
as its input feature and requires the size of this anchor
set Nh to be large for well capturing the data distribution.
In contrast, our FLAG classifier employs the spectral rep-
resentation with the dimensionality d as its input feature,
which can keep its hypothesis space in a lower level while
enlarging the scale of the coarsest anchor set. As both of
them actually assign labels based on linear decision surfaces
with the corresponding feature, their VC dimensions can be

easily obtained [28], namely Nh + 1 for HAGR and d + 1
for FLAG. According to the computational learning theory
[5], to approximately learn a target function in a hypothesis
space, the number of required labeled datapoints is linear
with its VC dimension. Therefore, compared with HAGR
built upon the same hierarchical anchor graph, FLAG re-
quires less labeled data to well train the model itself. As
our work aims at the setting of semi-supervised learning
where only a few data are labeled, FLAG is a more powerful
approach to handle the large scale classification in terms of
both the effectiveness and efficiency.

5.2 On the Improvements of FLAG
So far, we can see that FLAG improves both the efficiency
and effectiveness of anchor-graph-based learning by opti-
mizing an anchor label predictor on the spectral represen-
tation. In this section, we further investigate how these
improvements are obtained based on the following aspects:
(1). the construction of the intra-layer adjacency matrix over
the coarsest anchors, and (2). the regularizer on the label
predictor.

For simplicity, we follow the settings in [37] and use
the dataset MNIST [20] for binary classification under two
settings: (1). the first 5 versus the last 5 digits in MNIST1,
and (2). the odd digits versus the even digits in MNIST2.

5.2.1 On the Intra-layer Adjacency Matrix Construction
In order to verify the first aspect, we define two intermediate
methods for a better comparison:

FLAGsv1: Compared with FLAG, this simplified version
does not implement the pruning operation on the accumu-
lated intra-layer matrix over the coarsest anchors. In other
words, it directly obtains their spectral representations by
performing spectral embedding with the original accumu-
lated intra-layer matrix.

FLAGsv2: Compared with FLAG, this simplified version
first constructs an intra-layer adjacency matrix over the
coarsest anchors with the RBF kernel and keeps the top
k values for each anchor. Then, it estimates the spectral
representations of these anchors by performing spectral
embedding with the adjacency matrix.

We fix µ=0 and optimize λ for a fair comparison. For
all the compared anchor-graph-based methods, we first
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Fig. 3. The accuracy variation with respect to the dimensionality of the spectral representation. Note the approaches in (a) and (b) are built upon
a hierarchical anchor graph (h = 1) with 5,000 anchors, and those in (c) are built upon a hierarchical anchor graph (h = 2) with 5,000 and 500
anchors.

TABLE 9
The comparison of time costs (in seconds) of different approaches (without the time cost of graph construction). Note that

the cost of calculating an intra-layer adjacency matrix over anchors, i.e., ZTZ, is nearly 0.05s.

Procedure step.1 step.2 step.3 step.4
spectral representation reduced Laplacian matrix inversion label inference total time

N1=5,000 estimation calculation cost
AGR-5,000 - 0.30 3.06 0.01 3.37
EAGR-5,000 - 0.08 3.06 0.01 3.15
FLAGsv1-5,000 (d=18) 1.37 0.07 0.01 0.01 1.46
FLAGsv2-5,000 (d=18) 0.20 0.07 0.01 0.01 0.29
FLAG-5,000 (d=18) 0.18 0.07 0.01 0.01 0.27

employ the same anchor graph model with 5,000 anchors.
We randomly sample 20 datapoints as the labeled part and
keep the rest unlabeled for the setting of SSL. The average
accuracy curves of AGR-5,000, EAGR-5,000, and FLAGsv1-
5,000, FLAGsv2-5,000, FLAG-5,000 with the varying dimen-
sionality of the spectral representation are shown in Fig.3,
and the time costs of different approaches (without the time
cost of graph construction) are listed in Table 9.

From the Fig.3, we can obtain the following observations.
First, by introducing a linear label predictor on the spectral
representations of anchors, FLAG-5,000 and FLAGsv1-5,000,
FLAGsv2-5,000 can obtain better performances than AGR-
5,000. Second, benefitting from the strict sparse constraint
on the intra-layer adjacency matrix over anchors, FLAG-
5,000 obtains higher classification accuracies than FLAGsv1-
5,000. This result shows that the pruning operation can
remove most of suspicious edges and improve the effective-
ness of the intra-layer adjacency relationships, which is also
consistent with the observation that sparse graphs perform
better than dense graphs [52]. Third, although FLAGsv2-
5,000 employs a sparse intra-layer matrix over the coarsest
anchors for estimating their spectral representations as well,
its best accuracy is still worse than that of FLAG-5,000.
The main reason is that, when two anchors are close to a
classification boundary but locate at different classes, the
pruning operation in FLAG can remove this kind of intra-

layer adjacency edges as we mentioned in Section 4.2, which
accordingly improves effectiveness. In contrast, the intra-
layer adjacency relationships built upon the RBF kernel in
FLAGsv2 completely depend on the Euclidean distance, and
the above noisy adjacency edges are hard to be discovered
and filtered from the intra-layer adjacency matrix.

Taking into account the time cost in Table 9, the following
observations can be obtained. First, the time cost of EAGR-
5,000 is slightly smaller than that of AGR-5,000 (HAGR
with h = 1). It is understandable that when calculating
the reduced Laplacian matrix, AGR involves multiple times
sparse matrix multiplication and EAGR only involves the
operation one time [42]. Second, FLAG-5,000 and FLAGsv2-
5,000 are faster than FLAGsv1-5,000, as the time complexity
of the spectral embedding with a sparse matrix is much
smaller than the one with a dense matrix. Third, all three
FLAG-based versions carry out the inversion of a smaller-
size matrix, and are therefore more efficient than the tradi-
tional fast learning approaches, especially AGR (HAGR). It
is worthwhile to note that when the number of the coarsest
anchors increases for better capturing the data distribution,
the improvement of the efficiency will be more significant.

Moreover, for three FLAG-based versions, namely
FLAG, FLAGsv1, and FLAGsv2, we additionally compare
their performances based on a hierarchical anchor graph, in
order to further demonstrate the effectiveness of our intra-
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Fig. 4. The accuracy variation with respect to the parameter µ.

layer adjacency matrix construction. For this purpose, we
repeatedly construct two-anchor-layer graphs for 10 times
with the sizes of 5,000 and 500, respectively. By 10 times
randomly sampling for building labeled data, the average
accuracies of three approaches built upon these graphs are
shown in Fig.3(c). As we can see, the best accuracies of
FLAG-5,000-500 are still higher than those of FLAGsv1-
5,000-500 and FLAGsv2-5,000-500 under two settings.

5.2.2 On the Predictor Regularizer
Finally we test the sensitivity of the weighting parameter µ
on the predictor regularizer. We set other parameters to the
optimized values according to the experiments above. Then,
we vary µ and the average classification accuracies over 10
trials are shown in Fig.4. As we can see, compared with the
accuracy where µ=0, this proposed regularizer can further
improve the performance of the anchor label predictor and
the classification accuracy stays at a high level over a wide
range of the parameter variation.

6 CONCLUSION AND FUTURE WORK

This work introduces a novel approach called Faster Learn-
ing on Anchor Graph (FLAG), which further scales up
anchor-graph-based models and meanwhile improves their
effectiveness. In FLAG, the labels of the coarsest anchors
are obtained by learning a linear predictor on their low-
dimensional spectral representations, which can be efficient-
ly estimated based on a proposed sparse intra-layer adjacen-
cy matrix over these anchors. To optimize the anchor label
predictor, we also develop a novel regularization framework
based on a hierarchical anchor graph. In this way, the
optimization can be computed with a faster matrix inversion
procedure, where the matrix size is only equivalent to the
dimensionality of the spectral representation. Furthermore,
owing to the flexible structure of hierarchical anchor graph
models, FLAG can be scaled to different scales of datasets,
including large-scale ones. The experiments on publicly
available datasets of various sizes have demonstrated this
superiority over the conventional fast learning models.

Finally, we discuss the possible research direction in
the future. In this work, we only employ a linear label
predictor on the spectral representation to keep computa-
tional efficiency. Differently, we may use more complex label
prediction models, such as deep neural networks. In this
way, we can build a hierarchical anchor graph model upon
a deep neural network, which leads to a semi-supervised
deep neural network training approach for large-scale data.
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Learning on Big Graph: Label Inference
and Regularization with Anchor Hierarchy
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Abstract—Several models have been proposed to cope with the rapidly increasing size of data, such as Anchor Graph Regularization

(AGR). The AGR approach significantly accelerates graph-based learning by exploring a set of anchors. However, when a dataset

becomes much larger, AGR still faces a big graph which brings dramatically increasing computational costs. To overcome this issue, we

propose a novel Hierarchical Anchor Graph Regularization (HAGR) approach by exploring multiple-layer anchors with a pyramid-style

structure. In HAGR, the labels of datapoints are inferred from the coarsest anchors layer by layer in a coarse-to-fine manner. The label

smoothness regularization is performed on all datapoints, and we demonstrate that the optimization process only involves a small-size

reduced Laplacian matrix. We also introduce a fast approach to construct our hierarchical anchor graph based on an approximate

nearest neighbor search technique. Experiments on million-scale datasets demonstrate the effectiveness and efficiency of the

proposed HAGR approach over existing methods. Results show that the HAGR approach is even able to achieve a good performance

within 3 minutes in an 8-million-example classification task.

Index Terms—Semi-supervised learning, graph-based learning, label smoothness regularization, label inference

Ç

1 INTRODUCTION

SEMI-SUPERVISED learning (SSL) methods [51], which
exploit the prior knowledge from unlabeled data to

improve classification performance, have been widely used
to handle datasets where only a portion of data are labeled.
Most of these methods are developed based on the cluster
assumption [47] or the manifold assumption [1]. The former
supposes that nearby points are likely to have the same
label, while the latter assumes that each class lies on a sepa-
rate low-dimensional manifold embedded in a higher
dimensional space. In recent years, various semi-supervised
learning methods have been developed under these
assumptions, including mixture methods [4], co-training
[2], semi-supervised support vector machines [18], and
graph-based methods [50].

In this paper, we focus on the family of graph-based
semi-supervised learning (GSSL) methods, where the label
dependencies among datapoints are captured by a weighted
graph. These methods first construct adjacency relation-
ships between all datapoints and then propagate labels
from labeled data to unlabeled data with the above

adjacency edges. Since many forms of real-world data, such
as handwritten digits, faces, medical data, and speech data,
exhibit such a kind of intrinsic graph structure, GSSL has
been applied to many applications, and achieves satisfying
performance [10], [41], [42]. Meanwhile, this roadmap can
be extended to building other advanced graph models, such
as hypergraph [17], [48] and multi-graph [7], [37], to
describe more complex relationships among real-world
entities like multimodal media contents [12], [13], [27].

In spite of the progress made in recent years, most GSSL
methods remain challenging mainly due to their cubic com-
plexity in optimization. Facing the ever increasing data size,
these approaches tend to be inefficient in dealing with
large-scale datasets. To address this issue, recent works
seek to employ anchors in scaling up graph-based learning
models, such as Anchor Graph Regularization (AGR) [23],
and Efficient Anchor Graph Regularization (EAGR) [36] (for
simplicity, we call both of them AGRwithout differentiation
except in comparative experiments). In these models,
anchors refer to the points that roughly cover the data distri-
bution. AGR then builds an anchor graph to model the
inter-layer adjacency between the data layer and the anchor
layer. For clarity, a few inter-layer edges in the anchor graph
built on a two-moon dataset are shown in Fig. 1a. The effi-
ciency of these approaches lies in two steps: 1) they build
the intra-layer adjacency relationships based on the anchors,
instead of computing all pair-wise adjacencies between the
datapoints in an exhaustive way; and 2) they infer the labels
of datapoints from the anchors based on their inter-layer
adjacency relationships. As the number of anchors can be
much smaller than datapoints, both the graph construction
and the learning process become much faster than those in
traditional graph-based approaches. However, to obtain a
reasonable accuracy, anchors need to be sufficiently
dense in order to build effective adjacency relationships.
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Therefore, when dealing with extremely large-scale data-
sets, the computational costs of existing anchor-graph-based
approaches will dramatically increase and become even
practically intractable. One possible way is to use only a
small number of anchors, but too sparse anchors will
degrade performance as the label inference and the label
smoothness regularization cannot be performed reliably.

To address this issue, in this paper, we introduce a novel
hierarchical anchor graph and develop a scalable SSL
approach named Hierarchical Anchor Graph Regularization
(HAGR). Different from the existing graphs, our proposed
graph contains multiple layers of anchors in a pyramid-style
structure. It consists of a layer of original datapoints and
multiple layers of anchors that describe the original data-
points from fine to coarse, as illustrated in Fig. 1b. Based on
the proposed graph model, we infer the labels of datapoints
from the coarsest anchors layer by layer based on inter-layer
adjacency relationships. Although the label smoothness reg-
ularization is performed on all datapoints, we demonstrate
that the optimization only involves a reduced Laplacian
matrix with the size of the coarsest anchor layer. Therefore,
the HAGR approach overcomes the limitation of anchor-
graph-based approaches and well compromises classifica-
tion performance and computational efficiency. The HAGR
approach is quite flexible, as we can set different layers of
anchors according to the scales of classification tasks. We
show that it will degrade to AGR when there is only one
anchor layer. In order to further improve the efficiency of the
construction of this hierarchical anchor graph, we also inves-
tigate an Approximate Nearest Neighbor Search (ANNS)
technique to build inter-layer adjacency relationships fastly.

The main contributions of our work are as follows.

1) We make a deep analysis on the existing anchor
graph and point out its limitations in dealing with
large-scale datasets. That is, AGR faces either an
intractable computational cost with dense anchors or
a degraded performance with sparse anchors.

2) We propose to build hierarchical anchor graph with
a pyramid structure, and develop a scalable classifier

based on it. The labels of datapoints are inferred
from the coarsest anchors layer by layer and the opti-
mization only involves a small-size reduced Lapla-
cian matrix. The proposed approach overcomes the
limitations of AGR and is able to efficiently accom-
plish large-scale classification with a good perfor-
mance (detailed computational costs will be shown
in Section 4.3).

3) We introduce a fast hierarchical anchor graph con-
struction process, in which the ANNS technique is
employed to build inter-layer adjacency relationships.

The rest of this paper is organized as follows. In Section 2,
we briefly introduce related work on the graph-based learn-
ing. In Section 3, we analyze the traditional AGR approach
and its limitations. The proposed approach is described in
Section 4. In Section 5, we validate our method and make
comparisons with other approaches on large-scale datasets.
We also evaluate different graph structures of HAGR to test
its flexibility as well as robustness. We finally conclude this
paper in Section 6.

2 RELATED WORK

Zhu et al. [50] first introduced the formulation of learning
problem based on a Gaussian random field, and analyzed
its intimate connections with random walks and spectral
graph theory. Zhou et al. [47] subsequently suggested an
effective algorithm to obtain the solution of a classification
function, which is sufficiently smooth with respect to the
intrinsic structure collectively revealed by known labeled
and unlabeled datapoints. Later, Zhu et al. [52] developed
an improved nonparametric kernel approach by incorporat-
ing order constraints during the convex optimization in
learning. Zelnik et al. [44] introduced a local scale in com-
puting the affinity between each pair of datapoints for the
weighted edge. Meanwhile, inspired by locally linear
embedding [31], many works that focus on improving the
weight estimation of the graph via sparse representation are
proposed. For example, Wang et al. [34] presented a linear
neighborhood model for label propagation, which assumes

Fig. 1. An illustrative example of anchor graph (consisting of 5,000 datapoints and an anchor layer with 250 anchors) and hierarchical anchor
graph (consisting of 5,000 datapoints, and multiple anchor layers with 1,000, 500, 250, and 100 anchors, respectively). For simplify, only a tiny frac-
tion of inter-layer edges are shown.
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that each datapoint can be linearly reconstructed from its
neighborhoods with l2 minimization. Similarly, Cheng et al.
[6] proposed a weight estimation method which optimizes
the sparse reconstruction coefficients on a l1 graph. Since
selecting local neighbors may lead to disjoint components
and incorrect neighbors in graph, Tian et al. [32] advocated
learning a nonnegative low-rank graph to capture global lin-
ear neighborhoods, under the assumption that each datapoint
can be linearly reconstructed from weighted combinations of
its direct neighbors and reachable indirect neighbors.

The above graph-based approaches show impressive
performances in various applications. However, they are
not sufficiently scalable, which imposes limitations in han-
dling larger datasets. With the rapid increase in data size,
researchers have paid more attention to designing novel
approaches to reduce the computational cost of graph-based
learning. Tsang et al. [33] formulated a sparsified manifold
regularizer as a center-constrained minimum enclosing ball
problem to produce sparse solutions with lower time and
space complexities. Wang et al. [35] proposed a multiple
random divide-and-conquer approach to construct an
approximated neighborhood graph and presented a neigh-
borhood propagation scheme to further enhance the accu-
racy. Chen et al. [5] presented a method to combine both the
original kernel and the graph kernel for scalable manifold
regularization.

More recent works seek to employ anchors in scaling up
the graph model. Different from the conventional graphs,
the anchor-based approaches build the adjacency relation-
ships between original datapoints based on anchors. Zhang
et al. [45], [46] first suggested using a set of anchors to per-
form an effective low-rank approximation of the data
manifold, and to span a model suffering the minimum
information loss. Liu et al. [23] first presented the anchor
graph model, and introduced it into the graph-based learn-
ing tasks. Wang et al. [36] subsequently proposed an
improved algorithm, which shows better performance and

computational efficiency. Compared with the conventional
graphs, these anchor-graph-based approaches can largely
reduce the complexity in graph construction, and have been
widely used in many applications [3], [20], [25], [38]. How-
ever, the two-layer anchor graph structure is still limited for
processing large-scale learning tasks, which will be ana-
lyzed in detail in the following.

3 ANCHOR-GRAPH-BASED LEARNING

In this section, we first present a brief description of the
anchor-graph-based approach and then give a detailed anal-
ysis on its limitations. For convenience, some important
notations used throughout the paper and their explanations
are listed in Table 1.

3.1 Formulations of AGR

We consider a standard multiclass SSL problem. Given a
dataset X ¼ fx1; x2; . . . ; xng 2 Rd�n with the first l samples
being labeled from c distinct classes, anchor-graph-based
methods start with clustering a set of representative anchors
U ¼ fu1;u2; . . . ;um1

g 2 Rd�m1ðm1 � nÞ, which share the
same feature space with original datapoints.

To be consistent with the notations in HAGR, here we let
L0 denote the layer of datapoints, and L1 denote the layer of
anchors, as illustrated in Fig. 1a. Different from the conven-
tional graph denoted by an n� n adjacency matrix, an
anchor graph G is represented by an n�m1 nonnegative
matrix Z0;1, which models inter-layer adjacency relation-
ships between points in L0 and L1. Specifically, the entries
in each row of Z0;1 are the weights between datapoint xi and
its k nearest anchors, which can be defined by Nadaraya-
Natson kernel regression [14]

Z0;1
is ¼ Ksðxi;usÞP

s02hii Ksðxi;us0 Þ
8s 2 hii; (1)

TABLE 1
Notations and Definitions

Notation Definition

G ¼ fX ;U; Eg An anchor graph or hierarchical anchor graph, where X and U indicate datapoints
and anchors, respectively, and E indicates the sets of inter-layer adjacency edges
between different sets of points.

h The number of anchor layers.

Lb The bth layer in the pyramidal graph structure, where L0 is the layer of original data
and Lbðb � 1Þ denotes the bth anchor layer.

mb The number of points in Lb.

Za;b The inter-layer adjacency matrix between La and Lb. By default, we have b ¼ aþ 1
for estimating the adjacencies between neighboring layers.

Za;b
is The inter-layer adjacency weight between point i in La and point s in Lb.

W The intra-layer adjacency matrix used in label smoothness regularization.
Lb The diagonal matrix of the degrees of the anchors in Lb.
A The soft label matrix of anchors.
F The soft label matrix of datapoints.
YL The class indicator matrix on labeled datapoints.
L The reduced Laplacian matrix in the anchor graph or hierarchical anchor graph.
n The number of datapoints.
c The number of classes in the dataset.
l The number of labeled datapoints in the dataset.
ZH The accumulated inter-layer adjacency matrix in the hierarchical anchor graph.
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where the notation hii � ½1 : m1� is the indices of the k clos-
est anchors of xi.

Given the labels of anchors and the above inter-layer
adjacency, the label of each datapoint can be estimated as a
weighted average of them, i.e.,

fðxiÞ ¼
Xm1

s¼1

Z0;1
is fðusÞ; (2)

where f is a prediction function that assigns each point a
soft label.

Then, to smooth these inferred labels, one can also con-
struct an intra-layer adjacency matrix of datapoints based
on inter-layer adjacency relationships

W ¼ Z0;1ðL1Þ�1
Z0;1T 2 Rn�n; (3)

where the diagonal matrix L1 is defined as L1
ss ¼

Pn
i¼1 Z

0;1
is .

From Eq. (3), we can see that, Wij > 0 means the two data-
points share at least one common anchor, and otherwise
Wij ¼ 0. It is likely that datapoints sharing common anchors
would have similar labels.

Let YL ¼ ½yT1 ; . . . ; yTl �
T 2 Rl�c denote the class indicator

matrix on labeled datapoints, where yir ¼ 1 if xi belongs to
class r, and yir ¼ 0 otherwise. Let A ¼ ½a1T; a2T; . . . ;
am1

T�T 2 Rm1�c denote the soft label matrix of the anchors in
L1. To deal with the standard multi-class SSL problem,
Anchor Graph Regularization [23] is formulated by mini-
mizingQA as

QA ¼
Xl

i¼1

k Z0;1
i	 A� yi k

2 þ �

2

Xn
i;j¼1

Wijk Z0;1
i	 A� Z0;1

j	 A k2; (4)

where � > 0 is the trade-off parameter balancing different
terms, and Z0;1

i	 is the ith row of Z0;1. From the above equa-
tion, we can see that, the labels of datapoints in both the fit-
ting and smoothness terms are inferred from the anchors.
Note that there are other alternative methods for manifold
regularization, such as [1], [5]. As it is not the main point of
this paper, we simply follow the idea of AGR.

Meanwhile, for the degree of each datapoint, we have

Dii ¼
P

j Wij ¼
P

sj Z
0;1
is ðL1

ssÞ
�1
Z0;1
js ¼

P
s Z

0;1
is ¼ 1. There-

fore, we obtain the diagonal matrix D ¼ I, and Eq. (4) is
reformulated into a matrix form as

QA ¼ kZ0;1
L A� YLk

2

F þ �trðATZ0;1TðI�WÞZ0;1AÞ

¼ kZ0;1
L A� YLk

2

F þ �trðATeLAÞ;
(5)

where Z0;1
L is the labeled part of Z0;1, and eL ¼ Z0;1TZ0;1�

ðZ0;1TZ0;1ÞðL1Þ�1ðZ0;1TZ0;1Þ 2 Rm1�m1 is the reduced Lapla-
cian matrix in AGR.

Differentiating QA with respect to A and setting it to
zero, we can obtain an optimal solution in the closed-form

A ¼ ðZ0;1
L

T
Z0;1
L þ �eLÞ�1

Z0;1
L

T
YL: (6)

Clearly, this matrix inversion takes a time cost of Oðm3
1Þ.

Finally, AGR employs the solved labels associated with
the anchors in L1 to infer the hard label of any unlabeled
datapoint in L0

byi ¼ argmaxr2f1;...;cg
Z0;1
i	 �A	r
br

; i ¼ lþ 1; . . . ; n; (7)

where A	r is the rth column of A, and br ¼ 1TZ0;1A	r is the
normalization factor, which balances skewed class distribu-
tions [50].

3.2 Limitation of AGR: A Dilemma

Compared with the traditional graph models, anchor graph
additionally introduces an anchor set into the graph con-
struction. As the number of these anchors can be much
smaller than datapoints, both the graph construction and
the optimization (especially the inverse computation in
Eq. (6)) become much faster. AGR thus becomes a popular
tool to handle relatively large datasets.

However, AGR still has limitation in dealing with
extremely large-scale datasets. Specifically, it faces a
dilemma between performance and computational cost. If
we only employ a relatively small number of anchors, the
performance of the AGR approaches will degrade as label
smoothness regularization and label inference cannot be
performed effectively. For the label smoothness regulariza-
tion, it will introduce many noisy intra-layer edges between
dissimilar datapoints by Eq. (3), as they tend to share a dis-
tant anchor. For the label inference, it will lead to unreliable
integration of label information from k nearest anchors, as
inter-layer adjacencies are estimated with too sparse
anchors that can be far away from the datapoint. Therefore,
to obtain a reasonable accuracy, anchors in the AGR
approaches need to be sufficiently dense to build effective
adjacency relationships. According to Eq. (6), it results in a
dramatically increase of computational cost, which makes
the approach practically intractable.

4 HIERARCHICAL ANCHOR GRAPH

REGULARIZATION

We first introduce the definition of hierarchical anchor
graph and how we use this graph to build a scalable GSSL
approach. Then, we present the efficient graph construction
based on ANNS, followed with the analysis on time com-
plexity and other discussions.

4.1 Label Inference and Regularization in HAGR

For graph-based SSL, to obtain good performances in large-
scale classification tasks, it always requires an effective
smoothness term for regularization, and an efficient solu-
tion for model optimization. To build such a scalable graph-
based classifier, we extend the anchor graph to a pyramid-
like structure and propose a novel graph model called hier-
archical anchor graph. For clarity, an illustrative example of
the hierarchical anchor graph is shown in Fig. 1b.

Definition 1 (Hierarchical Anchor Graph). G ¼ fX ;U; Eg
is a multiple-layer pyramidal graph, where X indicates the data
set, U indicates the collection of anchor sets, and E indicates the
collection of the adjacency matrices of inter-layer edges between
neighboring layers. Suppose the original datapoints X 2 Rd�n

locate in the bottom layer (L0) of the pyramid. The remaining
layers (Lb; b ¼ 1; . . . ; h) are all composed of multiple anchor
sets Uis from fine to coarse, where the size of
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Ub 2 Rd�mbðb ¼ 1; . . . ; hÞ is gradually reduced, namely,
m1 > 	 	 	 > mh. All the layers are linked up to a complete

graph with h sets of inter-layer adjacency edges, represented by

E ¼ fZ0;1; . . . ;Zh�1;hg 2 Rfn�m1;...;mh�1�mhg, in which Zb�1;b

denotes the adjacencies between points in Lb�1 and Lb.

Based on the hierarchical anchor graph, we can construct
a scalable graph-based classifier for multi-class classification
tasks, of which the following two key parts are presented in
detail: 1) inter-layer adjacency relationships for label infer-
ence, which is designed to reduce the number of parameters
and make the learningmore efficient; and 2) intra-layer adja-
cency relationships for label smoothness, which is to build
an effective regularization and ensure the learning accuracy.

We first pay attention to the former one. Based on the col-
lection of the inter-layer adjacency relationships, we propose
to infer the labels of datapoints from Lh layer by layer
throughout the whole graph. As a result, we only need to
learn the labels of the coarsest anchors in Lh. Denote ZH as
the adjacency matrix that estimates the accumulated inter-
layer relationships fromL0 toLh, andwe can computeZH as

ZH ¼ Z0;1 . . .Zh�1;h 2 Rn�mh: (8)

Let A denote the soft label matrix of the anchor set in Lh,
and F denote the inferred label matrix of datapoints in L0.
With the above accumulated matrix, we can conduct the
label inference from Lh to L0 in a coarse-to-fine manner

F ¼ Z0;1Zh�1;hA

¼ ZHA:
(9)

Next, we consider the label smoothness regularization. In
traditional graph-based learning, we prefer sparse intra-
layer adjacency matrix because a sparse graph has much
less spurious connections between dissimilar points and
tends to exhibit high quality. Zhu [49] also pointed out that
fully-connected dense graphs perform worse than sparse
graphs empirically. Denoting W as the intra-layer adjacency
matrix used in label smoothness regularization, we there-
fore formulate W only based on the inter-layer adjacencies
between the data layer L0 and the finest anchor layer L1 in
the hierarchical anchor graph

W ¼ Z0;1ðL1Þ�1
Z0;1T 2 Rn�n; (10)

where the diagonal matrix L1 is defined as L1
ss ¼

Pn
j¼1 Z

0;1
js .

Based on the inferred label matrix F and the intra-layer
adjacency matrix W, we finally obtain Hierarchical Anchor
Graph Regularization

argminA k ZH
LA� YL k2F þ �

2

Xn
i;j¼1

Wijk ZH
i	A� ZH

j	A k2; (11)

where ZH
L is the labeled part of ZH. Similar to Eq. (4), we

have Dii ¼
P

j Wij ¼ 1, and the above expression can be
written in the matrix form

argminAkZH
LA� YLk

2

F þ �trðATZHTðI�WÞZHAÞ;

or

argminAkZH
LA� YLk

2

F þ �trðATL̂AÞ; (12)

where L̂ is the reduced Laplacian matrix in HAGR, com-
puted by

L̂ ¼ ZHTðI�WÞZH

¼ ZHT
ZH � ðZHT

Z0;1ÞðL1Þ�1ðZ0;1TZHÞ 2 Rmh�mh:
(13)

As we can see, although our label smoothness regulariza-
tion is first performed on the labels of all datapoints with
the finest anchor layer, the optimization only involves a
reduced Laplacian matrix with the size of the coarsest
anchor layer. Therefore, HAGR can overcome the limitation
of AGR and improve the computation in matrix inversion.
Note that since ZH is the product of a series of k-sparse adja-
cency matrices, we will show that the computation of L̂ is
also efficient. The detailed computational costs of HAGR
will be analyzed later.

With simple derivations, we obtain a global optimal solu-
tion for the soft label matrix of the anchor set in Lh as

A ¼ ðZH
L

T
ZH
L þ �L̂Þ

�1
ZH
L

T
YL: (14)

Based on the learnt labels of the coarsest anchors and the
inter-layer adjacency matrix ZH, we can finally infer the
hard label for any unlabeled datapoint

byi ¼ argmaxr2f1;...;cg
ZH
i	 �A	r
br

pr; i ¼ lþ 1; . . . ; n; (15)

where br ¼ 1TZHA	r is the normalization factor, and pr is
the desirable proportion for class r [50].

From the definition of hierarchical anchor graph, we can
see its flexibility. We can vary the number of anchor layers
and the number of anchors in each layer. We leave the spe-
cific analysis on the parameter settings in the experimental
section. In particular, we find that, if our hierarchical anchor
graph only contains one anchor layer ðh ¼ 1Þ, it degrades to
the anchor graph, and correspondingly HAGR becomes
equivalent to AGR.

4.2 Efficient Graph Construction

Like anchor graph, the construction of a hierarchical anchor
graph involves two issues, i.e., the generation of anchor sets
and the inter-layer adjacency estimation between neighbor-
ing layers.

For the first issue, we can simply follow the anchor graph
models in [24], [38] to use a fast clustering algorithms to han-
dle it. As for the issue of the weight estimation, besides the
standard kernel regression method, formulating it as a geo-
metric reconstruction problem is an alternative choice [23],
[36]. However, the kernel regression takesOðdnm1Þ time com-
plexity,while the geometric basedmethods needmore time in
solving an optimization problem. For extremely large data-
sets, both of them can bring intractable computational costs.

To improve the efficiency of the graph construction, we
investigate an ANNS technique to accelerate the weight esti-
mation. To obtain adjacency relationships between points in
Lb�1 and Lb, we first build a Kmeans tree T upon points in
Lb. Then, for each point in Lb�1, we find its k nearest points
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in Lb with T , and compute a set of l1 normalized weights
between them. With this operation, for example, estimating
the adjacencies between n datapoints and m1 anchors can
be efficiently implemented in Oðdnlogm1Þ [29]. The whole
process is summarized in Algorithm 1. Note that aiming at
further efficiency, other state-of-the-art techniques, such as
Hashing [30], [39], [40], can be considered.

Algorithm 1. Kmeans-Tree-Based Inter-Layer Weight
Estimation

Input: points inLb�1, points inLb, number of nearest neighbors k.
1: Employ Kmeans tree building algorithm on points in Lb,

and obtain a Kmeans tree T .
For each point vi in Lb�1

2: Employ Kmeans tree searching algorithm for vi on tree
T , and obtain indices of its k approximate nearest
neighbors hii, with the corresponding distances dhii.

3: Compute the l1 normalized inter-layer weights

zhii ¼ expð� dhii
s
Þ=ẑ, where ẑ ¼

P
expð�dhii

s
Þ.

End for
4: Construct a sparse inter-layer adjacency matrix Zb�1;b

with the above indices hiis and weights zhiis.

Output: Zb�1;b.

Note: The details about Kmeans tree building and searching algo-
rithms can be found in [29].

4.3 Computational Cost of HAGR

We now analyze the computational cost of HAGR. As inter-
layer adjacency matrices in HAGR are all k-sparse, we first
introduce the following theorem for the fast sparse matrix
multiplication. According to it, for example, the time cost of
the accumulated inter-layer matrix ZH scales as OðknmhÞ .

Theorem 1. Let P and Q be two a� b matrices. If Q contains at
most c non-zero entries, the naive algorithm can obtain product
O ¼ PQT with ac multiplications. The similar bound is
obtained when P contains at most c non-zero entries. The num-
ber of additions required is also bounded by the required num-
ber of multiplications.

The proof of the above theorem can be found in [43].
Then, the steps of HAGR and the corresponding time

costs are summarized as follows.

1) Construct a hierarchical anchor graph with Algo-
rithm 1. The computational cost of computing the
adjacency matrices is Oð

Ph
b¼1 dmb�1logmbÞ, where

m0 ¼ n. Since practically we usually have n 
 mb,
this cost can be approximated as Oðdnlogm1Þ.

2) Calculate the reduced Laplacian matrix L̂ via
Eq. (13). As the main cost of this step is the sparse
matrix multiplication, based on Theorem 1, the total
cost here scales as OðknmhÞ.

3) Carry out the graph regularization via Eq. (14). The
complexity of the matrix inversion is Oðm3

hÞ.
4) Predict the hard labels of unlabeled datapoints via

Eq. (15). As we have obtained ZH in step 2, it can be
conducted efficiently in OðnmhcÞ.

To sum up, the time complexity of HAGR scales as

Oðdnlogm1 þ knmh þm3
h þ nmhcÞ;

where d is the number of feature dimensions,mb is the num-
ber of anchors in the bth layer, k is the number of nearest
neighbors in adjacency estimation, and c is the number
of classes.

Here we also summarize the computational costs of
Learning with Local and Global Consistency (LLGC [47], a
typical graph-based SSL method), AGR and HAGR in
Table 2, in which Algorithm 1 is applied into all these meth-
ods for a fair comparison. From the table we can observe
that, although their complexities in graph construction
become linear with respect to the data size and can be com-
parable, LLGC still has a cubic-time complexity in graph
regularization. AGR faces a dramatically increase of compu-
tational cost when anchors need to be sufficiently dense for
a reasonable accuracy. However, as the scale of the coarsest
anchors can be much smaller than the finest anchors, i.e.,
m1 
 mh, HAGR has a much less computational cost and is
able to deal with large-scale datasets.

4.4 Discussion on Adjacency Designs

In Section 4.1, we suggest to build the inter-layer adjacency
matrix ZH with anchors layer by layer, and the intra-layer
adjacency matrix W only based on points in L0 and L1.
Now we present an in-depth analysis on these two aspects.

4.4.1 On the Inter-Layer Adjacency

In HAGR, we model inter-layer adjacency relationships
from L0 to Lh layer by layer, and then infer the labels of
datapoints in a coarse-to-fine manner. According to Eq. (7),
it leads to the adaptive relationships between datapoints
and the coarsest anchors. That is, when the datapoint is
inside the convex envelope of its k nearest anchors in Lh,
this datapoint only has connection with these k anchors.
When the datapoint is close to the convex envelope’s mar-
gin, it can build extra inter-layer edges with other nearest
anchors in Lh. Otherwise, if we build adjacencies between
points in L0 and Lh in one step, we are only able to obtain
the inflexible relationships between datapoints and their
fixed k nearest anchors in Lh.

In the label inference, the above adaptive relationships
lead to more reliable integration of label information from
the coarsest anchors. Without loss of generality, we demon-
strate this by a toy example in Fig. 2, where we have k ¼ 3
and h ¼ 2. In this example, we want to infer the labels of
datapoints ðxi; i ¼ 1; 2Þ assisted with the labels of the nearby
anchors ðus; s ¼ 1; 2; 3; 4Þ in L2. In our coarse-to-fine man-
ner, the datapoint x1, which is inside the convex envelope of
its 3 nearest anchors in L2, receives labels from these 3
anchors. Meanwhile, the datapoint x2, which is near to a
margin of its convex envelope, can receive label information
from both u1;u2;u3 and u4, due to the transitional anchor u0

4

TABLE 2
Comparison of Computational Complexities

of Three Graph-Based Methods

Methods LLGC AGR HAGR

Graph construction OðdnlognÞ Oðdnlogm1Þ Oðdnlogm1Þ
Regularization Oðn3Þ Oðknm1 þm3

1Þ Oðknmh þm3
hÞ

Inference - Oðnm1cÞ OðnmhcÞ
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in L1. On the contrary, suppose we conduct the one-step
label inference between datapoints and their fixed k coarsest
anchors. When k ¼ 3, the label information on u4 is ignored
in predicting y2. When k ¼ 4, the noisy labels of the coarsest
anchors far away are introduced while inferring y1. In Sec-
tion 5.1, we will empirically demonstrate that the classifica-
tion accuracy can be obviously improved due to this
characteristic of ZH, although the labels of datapoints are still
inferred from sparse anchors, namely, the coarsest anchors.

4.4.2 On the Intra-Layer Adjacency

Note that we compute the intra-layer adjacency matrix as
W ¼ Z0;1L�1

1 Z0;1T. That means, we build W only based on
the anchors in L1 to force the intra-layer edges stay between
similar datapoints. We can also build W based on anchors
in coarser layers, such as using the hth layer, i.e.,
W ¼ Z0;hL�1

h Z0;hT 2 Rn�n, h > 1, But note that using differ-
ent anchor layers to buildW leads to nearly the same compu-
tational costs of HAGR. Meanwhile, too sparse anchors will
arise many incorrect intra-layer edges between dissimilar
datapoints since they possibly share a common anchor. That
is whywe computeW only using the anchors inL1.

5 EXPERIMENT

In this section, we investigate both the effectiveness and effi-
ciency of our proposed HAGR on real-world datasets. All
the experiments are implemented on a PC with E5-2620 v2
@2.10 GHz and 64G RAM. Here we use the following five
datasets with scales varying from 20,000 to 8,100,000. The
descriptions of these datasets are given in below, and some
statistics of them are listed in Table 3.

1) Letter. The dataset contains 20,000 samples of capital
letters from ‘A’ to ‘Z’ in the English alphabet [11].
Each sample is converted into 16 primitive numeri-
cal attributes (statistical moments and edge counts).

2) MNIST. It contains 70,000 samples of handwritten
digits from ‘0’ to ‘9’ [21]. Each of the ten classes

contains about 7,000 samples, which are images cen-
tered in a 28� 28 field by computing the center of
mass of the pixels. We directly use the normalized
grayscale value as the feature.

3) Extended MNIST. The extended MNIST is widely
used in many large-scale graph-based works [15],
[19], [24]. The dataset is constructed by translating
the original images in MNIST one pixel in each direc-
tion. As a result, there are 630,000 samples in 900
dimensions by using the normalized grayscale val-
ues as features.

4) Extended USPS. The original USPS dataset contains
7,291 training samples of handwritten digits in ten
classes [23]. All the digits from ‘0’ to ‘9’ are extended
by shifting the 16� 16 images in all directions for up
to five pixels [33]. There are 882,211 samples in 676
dimensions in total.

5) MNIST8M. The MNIST8M dataset has been used in
[16], [22], [26] to verify the effectiveness of large-scale
learning algorithms. It contains totally 8,100,000 sam-
ples in 784 dimensions. In this dataset, the first
70,000 samples belong to the standard MNIST data-
set, and each remaining example is generated by
applying a pseudo-random transformation to the
MNIST training example.

Similar to [23] and [36], the above datasets are catego-
rized into small, medium and large sizes. Specifically, in
our experiments, we regard Letter and MNIST as small-size
datasets, Extended MNIST and Extended USPS as medium-
size datasets, and MNIST8M as a large-size dataset.

5.1 On the Effectiveness of Intra-Layer and
Inter-Layer Adjacency Matrices

We conduct experiments on small-size datasets, i.e., Letter
and MNIST, to validate the effectiveness of two adjacency
designs discussed in Section 4.4.

We first construct a hierarchical anchor graph with two
anchor layers, where the size of L1 is empirically set to

Fig. 2. An illustration of anchor-based label inference in a hierarchical anchor graph. Note that we ignore other points as they have no influence on
the label inference here.

TABLE 3
Details of the Five Databases Used in Our Experiments

Letter MNIST Extended MNIST Extended USPS MNIST8M

# of instances 20,000 70,000 630,000 882,211 8,100,000
# of categories 26 10 10 10 10
# of dimensions 16 784 900 676 784
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n=10, and the size of L2 varies from 100 to 500. For a clear
comparison, we change the formulation of AGR to

argminAkZLA� YLk2F þ �

2

Xn
i;j¼1

Wijk Zi	A� Zj	A k2; (16)

where W is the intra-layer adjacency matrix for label
smoothness regularization and Z is the inter-layer adjacency
for label inference.

Then, based on the above formulation and the hierarchi-
cal anchor graph, we define three intermediate versions for
HAGR:

1) HAGRbase, which has the same structure to AGR and
is a baseline for comparison. It only employs anchors
in L2 and datapoints in L0 to build adjacency matri-
ces for both the label smoothness regularization and
label inference.

2) HAGRW , which is an improved version of HAGRbase

with a change on label smoothness regularization.
This method is compared in order to validate the
intra-layer adjacency design. Compared with
HAGRbase, the only difference is that, for the label
smoothness regularization, it builds W as
Z0;1ðL1Þ�1

Z0;1T in Eq. (16)
3) HAGRZ , which is an improved version of HAGRbase

with a change on label inference. This method is
compared in order to validate the inter-layer adja-
cency design with a coarse-to fine manner. Com-
pared with HAGRbase, it builds an accumulated
inter-layer matrix Z as Z0;1Z1;2 in Eq. (16).

The differences of HAGR and the above methods are
summarized in Table 4. For the other parameters, we set k

to 3 to make the graph sparse, and tune � to its optimal val-
ues. In this way, we can provide a fair comparison for these
algorithms to validate different adjacency designs. We ran-
domly select 260 and 100 labeled samples for Letter and
MNIST, respectively, and leave the remaining ones unla-
beled for SSL models.

Table 5 shows the classification accuracies of the above
methods. From this table, we have three observations. First,
by comparing HAGRW with HAGRbase, we can see that,
although two methods build the same inter-layer relation-
ships between points in L0 and L2, HAGRW obtains higher
accuracies than HAGRbase. The main reason is that, by intro-
ducing a much sparser intra-layer adjacency matrix,
HAGRW can better smooth the labels of datapoints. Second,
by comparing HAGRZ with HAGRbase, we can see that, the
former obtains better classification performances than the
latter, which shows the effectiveness of our adaptive inter-
layer adjacency relationships in label inference. Third, when
the size of L2 increases, the accuracies of all these
approaches increase, and HAGR consistently outperforms
the other three methods.

5.2 Comparison with Existing Methods

To demonstrate both the efficiency and effectiveness of
the proposed HAGR, we compare it with several state-
of-the-art anchor-based SSL models, such as AGR and
EAGR. We also report the performance of several base-
line methods including 1NN, linear SVM. For clarity, here
we use ‘HAGR-m1m1-m2m2-	 	 	-mhmh’ to denote the HAGR method
built upon a hierarchical anchor graph with hh anchor layers.
For example, ‘HAGR-5000-500’ means there are two
anchor layers in its graph structure, which contain 5,000
and 500 anchors, respectively. The methods for compari-
son are described in below.

1) The nearest neighbor method, which determines the
label of a sample by referring to its closest sample in
the labeled set. The method is denoted as ‘1NN’.

2) Linear SVM [8]. We use the SVM implementation
from LIBLINEAR, which is a library for large-scale
linear classification. The method is denoted as
‘LSVM’.

3) Anchor graph Regularization [23], which is built
upon an anchor graph with single anchor layer. It is
the prime counterpart in our experiments, and we
denote it as ‘AGR’.

TABLE 4
The Differences of HAGRbase, HAGRW , HAGRZ ,

and HAGR in Terms of Label Inference and
Label Smoothness Regularization

Approaches Adjacency Matrix

Label Inference
Term

Label Smoothness
Regularization Term

HAGRbase Z0;2 Z0;2ðL2Þ�1
Z0;2T

HAGRW Z0;2 Z0;1ðL1Þ�1
Z0;1T

HAGRZ Z0;1Z1;2 Z0;2ðL2Þ�1
Z0;2T

HAGR Z0;1Z1;2 Z0;1ðL1Þ�1
Z0;1T

TABLE 5
Accuracy (%) Comparison of HAGRbase, HAGRW , HAGRZ , and HAGR on the Letter and MINST Datasets

Dataset m1 m2 HAGRbase HAGRW HAGRZ HAGR

Letter 2,000 100 45:19� 1:53 45:61� 1:59 49:19� 0:70 49:57� 1:0249:57� 1:02
(l ¼ 260) 200 50:91� 1:40 51:30� 1:31 54:75� 1:21 54:93� 1:0554:93� 1:05

300 53:72� 1:54 54:76� 1:73 57:00� 1:43 57:78� 1:4857:78� 1:48
400 55:58� 1:66 56:99� 1:57 58:30� 1:34 59:88� 1:4259:88� 1:42
500 56:80� 1:65 58:00� 1:69 59:51� 1:18 60:86� 1:3660:86� 1:36

MNIST 7,000 100 79:17� 1:39 80:33� 1:30 82:33� 1:15 84:59� 0:8984:59� 0:89
(l ¼ 100) 200 83:28� 1:21 83:92� 1:17 85:01� 0:87 86:79� 0:6686:79� 0:66

300 84:44� 0:98 85:03� 1:02 85:89� 0:97 88:01� 1:0088:01� 1:00
400 85:30� 1:31 85:92� 1:26 86:21� 1:15 88:32� 1:1588:32� 1:15
500 86:35� 1:80 86:82� 1:74 86:84� 1:18 88:66� 1:2388:66� 1:23
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4) Efficient Anchor graph Regularization [36], which is
an improved version of AGR. The method is denoted
as ‘EAGR’.

5) HAGR-m1-m2, which denotes a two-anchor-layer
HAGR method. We build the corresponding hierar-
chical anchor graph by adding a coarser anchor layer
above the anchor graph in methods (3-4). The pur-
pose of comparing our approach with this method is
to demonstrate the efficiency by introducing a
smaller anchor layer.

6) HAGR-m1-m2-m3, which denotes a three-anchor-
layer HAGR method. Based on the graph structure
in method (5), we add a finer anchor layer with sam-
pled points between its data layer and two anchor
layers. This three-anchor-layer HAGR is our pro-
posed approach for the classification on the
medium-size and large-size datasets.

Note that here we do not further compare our approach
with several other SSL or large-scale classification methods
such as conventional graph-based SSL [47], the Eigenfunc-
tions method introduced in [9], the Laplacian SVM method
introduced in [28] and the Prototype Vector Machines
method introduced in [45], [46], due to the following two
facts. First, several methods can hardly be implemented on
very large datasets. Second, existing studies have already
demonstrated the performance superiority of AGR and
EAGR over thesemethods [23], [36], and thus the superiority
of HAGRwill be greater if it outperformsAGR and EAGR.

For fair comparisons, we consistently apply the proposed
ANNS-based weight estimation algorithm for methods (3-6)
in their graph construction, and corresponding kernel

widths are set by cross validation. For the above methods,
we tune � to the optimal values.

5.2.1 Medium-Size Datasets

We first conduct experiments on the Extended MNIST and
ExtendedUSPS datasets. To accelerate the running speed, we
follow [23] and performPCA to reduce the feature dimension
to 86. For the twomedium-size datasets, we consistently con-
struct the anchor graph with 20,000 anchors to build AGR
and EAGR. Then, by further adding anchor layers, we build
two HAGR methods as ‘HAGR-20,000-5,000’ and ‘HAGR-
200,000-20,000-5,000’, respectively. As for the setting of semi-
supervised learning, we vary the number of labeled samples
l ¼ f100; 200; . . . ; 1; 000g, while the rest samples remain as
unlabeled data.

Averaged over 20 trials, the classification accuracies of
the Extend MNIST and Extend USPS datasets are shown in
Tables 6 and 7, respectively. The time costs of SSL methods
are listed in Table 8.

From these tables, the following observations can be
made. First, the performances of all graph-based SSL
approaches stay at a higher level than Linear SVM and
1NN. This demonstrates the usefulness of unlabeled data in
SSL. Second, compared with AGR and EAGR, the accuracies
of HAGR-20,000-5,000 are slightly lower. However, the per-
formance gap is quite limited-compared with AGR, the
accuracy loss of this two-anchor-layer HAGR is smaller
than 0.5 percent in most cases. It means that, by building an
intra-layer adjacency matrix based on a fixed-size anchor
set for label smoothness regularization, the effectiveness of
the anchor-based learning can be almost maintained even

TABLE 6
Classification Accuracies (%) with Different Number of Labeled Samples on the Extended MNIST Dataset

# of labeled
samples

1NN LSVM AGR EAGR HAGR-
20,000-5,000

HAGR-
200,000-20,000-5,000

100 60:95� 0:59 58:58� 2:11 88:42� 1:36 88:48� 1:29 87:97� 1:28 90:75� 1:0390:75� 1:03
200 69:33� 0:99 64:07� 1:58 90:23� 0:44 90:80� 0:42 89:81� 0:56 92:21� 0:4292:21� 0:42
300 73:51� 0:89 66:99� 0:53 91:10� 0:38 91:84� 0:35 90:65� 0:43 93:13� 0:3193:13� 0:31
400 75:80� 0:60 69:50� 0:86 91:35� 0:34 92:15� 0:29 91:15� 0:33 93:39� 0:1893:39� 0:18
500 77:77� 0:41 71:47� 1:21 92:12� 0:18 92:66� 0:17 91:96� 0:12 93:73� 0:1993:73� 0:19
600 79:09� 0:53 72:69� 1:30 92:47� 0:10 92:99� 0:13 92:27� 0:11 93:95� 0:1193:95� 0:11
700 80:17� 0:29 73:69� 1:96 92:54� 0:11 93:11� 0:13 92:43� 0:12 94:05� 0:1194:05� 0:11
800 81:10� 0:41 75:22� 1:40 92:79� 0:13 93:39� 0:09 92:61� 0:10 94:15� 0:0694:15� 0:06
900 81:94� 0:45 75:93� 1:11 93:09� 0:09 93:63� 0:10 92:93� 0:09 94:23� 0:0694:23� 0:06
1,000 82:60� 0:38 76:69� 0:95 93:23� 0:11 93:77� 0:08 93:09� 0:10 94:28� 0:0994:28� 0:09

TABLE 7
Classification Accuracies (%) with Different Number of Labeled Samples on the Extended USPS Dataset

# of labeled
samples

1NN AGR EAGR HAGR-
20000-5000

HAGR-
200000-20000-5000

100 38:37� 0:71 63:82� 1:33 64:09� 0:85 63:43� 1:11 68:06� 1:5568:06� 1:55
200 47:96� 1:14 73:60� 0:90 73:75� 0:96 73:48� 0:96 77:90� 1:3377:90� 1:33
300 53:48� 1:06 78:47� 0:91 78:88� 0:78 78:28� 0:67 82:28� 0:9282:28� 0:92
400 57:61� 1:00 81:41� 0:60 81:75� 0:45 81:00� 0:57 84:50� 0:8184:50� 0:81
500 61:19� 0:80 83:51� 0:94 84:09� 0:75 84:05� 0:78 86:35� 0:9486:35� 0:94
600 63:94� 0:64 84:50� 0:88 85:28� 0:76 84:09� 0:65 87:11� 0:8487:11� 0:84
700 65:90� 0:44 85:80� 0:70 86:52� 0:56 85:31� 0:42 88:10� 0:4988:10� 0:49
800 67:79� 0:38 86:31� 0:93 87:59� 0:74 86:29� 0:69 88:91� 0:6588:91� 0:65
900 69:18� 0:38 86:95� 0:68 88:23� 0:59 86:95� 0:50 89:44� 0:3289:44� 0:32
1,000 70:71� 0:60 87:87� 0:55 88:82� 0:35 87:55� 0:47 90:01� 0:3190:01� 0:31
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we significantly reduce the size of to-be-learned anchor set
(from 20,000 to 5,000). When taking into account the run-
ning time of the learning process (shown in Table 8), this
accuracy loss becomes acceptable in real applications. Third,
by increasing the size of L1 over 20,000, the performances of
the anchor-based approaches can be further improved due
to better adjacency relationships. Based on this, HAGR-
200,000-20,000-5,000 consistently outperforms AGR and
EAGR. When the number of labeled samples is small, this
advantage is more obvious, e.g., improvements of about 2
and 4 percent on Extended MNIST and Extended USPS,
respectively. It verifies the effectiveness of HAGR by intro-
ducing a finer anchor layer to improve the graph regulariza-
tion. Fourth, although the ANNS-based graph construction
can be applied to all graph-based approaches, it is particu-
larly suitable for our HAGR. Due to this efficient graph con-
struction and the fast optimization, HAGRs overcome the
limitation of AGR and EAGR, and achieve good performan-
ces with less computational costs.

5.2.2 Large-Size Dataset

To demonstrate the scalability of HAGR, we conduct experi-
ments on the MNIST8M dataset, where the dimension of
examples is also reduce to 86 by PCA. We first construct an
anchor graph with 30,000 anchors to build AGR and EAGR.
Then, we build two HAGR methods, i.e., ‘HAGR-30000-
5,000’ and ‘HAGR-300,000-30,000-5,000’, respectively. By
repeating the similar evaluation process, we display the
classification accuracies over 20 trials in Table 9. The time
costs of SSL approaches are listed in Table 10.

From these tables, we have the following observations.
First, compared with AGR and EAGR, the accuracy loss of

HAGR-30,000-5,000 is acceptable while its time cost is much
less. Second, as the number of labeled data varies from 100
to 1,000, the performances of all methods increase, and our
HAGR-300,000-30,000-5,000 consistently outperforms the
other methods.

It is also worth noting that, in our experimental results,
we actually have put more emphasis on the performance
superiority of the three-anchor-layer HAGR. One may
argue that we can increase the number of anchors in AGR
and EAGR, say, setting 300,000 anchors. But this will dra-
matically increase the time costs of these methods
(increased by about 103 times), which are practically
intractable.

5.3 On the Structure of Hierarchical Anchor Graph

We can see that HAGR is a quite flexible approach, and thus
designing the structure of the hierarchical anchor graph can
be important in classification tasks. Therefore, we conduct
additional experiments by varying the number of anchor
layers (h) and the size of each anchor layer (mb) in the pro-
posed graph model, trying to investigate the impact of these
parameters. For convenience, Extended USPS dataset is
used in this experiment. We build three anchor graphs with
5,000, 10,000, and 20,000 anchors for implementing AGR
and EAGR as comparisons.

For clarity, in the pictures illustrating results, we use
black/blue/red lines to show the results of HAGR built
with 2/3/4 anchor layers, respectively. Among them, each
dot-curve denotes HAGRs with the varying anchor size mb,
and the straight line without dots means the size of each
anchor layer of this HAGR is fixed. The specific size is dis-
played at the bottom of each subfigure.

TABLE 8
The Comparison of Time Costs (in Seconds) of AGR, EAGR, and HAGR Methods on Medium-Size Datasets

Dataset AGR EAGR HAGR-20,000-5,000 HAGR-200,000-20,000-5,000

Extended MNIST 152.81 151.58 12.12 17.06
Extended USPS 163.31 162.75 17.55 24.18

TABLE 9
Classification Accuracies (%) with Different Number of Labeled Samples on the MNIST8M Dataset

# of labeled
samples

1NN LSVM AGR EAGR HAGR-
30,000-5,000

HAGR-
300,000-30,000-5,000

100 60:16� 1:96 59:67� 2:19 89:87� 1:78 90:27� 0:18 89:46� 1:24 91:36� 0:7091:36� 0:70
200 68:66� 1:29 64:46� 2:37 91:15� 0:59 91:76� 0:57 90:85� 0:50 92:46� 0:4292:46� 0:42
300 72:78� 0:81 66:79� 2:25 92:21� 0:51 92:37� 0:51 91:66� 0:42 93:05� 0:3793:05� 0:37
400 75:33� 0:60 68:33� 1:97 92:47� 0:44 92:73� 0:38 92:16� 0:36 93:43� 0:3793:43� 0:37
500 77:24� 0:55 70:65� 1:49 92:70� 0:41 93:05� 0:29 92:50� 0:29 93:78� 0:2493:78� 0:24
600 78:58� 0:54 72:64� 1:36 92:80� 0:34 93:17� 0:27 92:64� 0:26 93:90� 0:2793:90� 0:27
700 79:87� 0:70 73:80� 1:27 93:12� 0:31 93:41� 0:30 92:92� 0:28 94:10� 0:2594:10� 0:25
800 81:02� 0:50 73:87� 1:18 93:19� 0:23 93:51� 0:15 93:06� 0:16 94:21� 0:1594:21� 0:15
900 81:76� 0:49 73:97� 0:96 93:29� 0:36 93:63� 0:21 93:18� 0:26 94:28� 0:1694:28� 0:16
1,000 82:51� 0:42 76:95� 1:13 93:49� 0:22 93:79� 0:15 93:37� 0:16 94:39� 0:1294:39� 0:12

TABLE 10
The Comparison of Time Costs (in Seconds) of AGR, EAGR, and HAGR Methods on the MNIST8M Dataset

Dataset AGR EAGR HAGR-30,000-5,000 HAGR-300,000-30,000-5,000

MNIST8M 665.07 662.60 104.97 137.54
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We first test the two-anchor-layer HAGRmethod. Similar
to the process in Section 5.2, for each of the three anchor
graphs, we add a coarser anchor layer L2 above the original
L1 to construct our hierarchical anchor graph (h ¼ 2). The
performance curves of HAGR-m1-m2 with respect to the
size of L2 are shown in Fig. 3. As we can see, the accuracy of
HAGR increases rapidly at the first stage. It means that,
although we can build a large-scale finest anchor layer in
HAGR to improve the performance, the size of to-be-
learned anchors cannot be too small. Otherwise, it tends to
restrict the performance of HAGR. When m2 reaches about
m1=4, the accuracy of the HAGR becomes stable. We note
that this number of to-be-learned anchors mh can still be

much smaller than the number of anchors m1 used in label
smoothness regularization.

Then, we investigate the three-anchor-layer HAGR
method. Based on each two-anchor-layer graph above, we
add a finer anchor layer L1 with m1 anchors between the
original data layer and two anchor layers to construct new
graph (h ¼ 3). The number of the coarsest anchors is set to
the empirical value, and the specific settings can be found
in Fig. 4. The performance curve of HAGR-m1-m2-m3 with
respect to m1 is shown in Fig. 4. As we can see, larger m1

brings higher accuracy. The reason is that, by increasing the
size of the finest anchor layer, the representation power of
these anchors becomes stronger. Then, we can obtain more

Fig. 3. Average performance curves with respect to the variation ofm2 in HAGR-m1-m2.

Fig. 4. Average performance curves with respect to the variation ofm1 in HAGR-m1-m2-m3.

Fig. 5. Average performance curves with respect to the variation ofm2 in HAGR-m1-m2-m3-m4.
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effective adjacency relationships for both the label smooth-
ness regularization and label inference.

We also build the four-anchor-layer HAGR method
(h ¼ 4) by further adding an anchor layer between original
L1 and L2 in each three-anchor-layer graph above. The per-
formance curve of HAGR-m1-m2-m3-m4 with respect to cur-
rent m2 is shown in Fig. 5. As we can see, further increasing
the number of anchor layers can improve the accuracy,
which demonstrates the effectiveness of exploring multiple-
layer anchors to model the coarse-to-fine label inference.

To summarize, when fixing the number of anchor layers
in hierarchical anchor graph, the performance of HAGR is
fairly robust to the number of anchors in each layer over a
large range (as we can see in each subfigure), and the to-be-
learned anchors can be much fewer than the anchors used
in label smoothness regularization. Meanwhile, increasing
the number of anchor layers can improve accuracy (under a
comparison from Figs. 3 to 5), and in our experiments, we
empirically find that three or four anchor layers are already
able to well handle million-scale datasets.

5.4 On the Trade-Off Parameter �

We also test the sensitivity of parameter � in the proposed
approach. For simplicity, we only illustrate the results of
HAGR with mh ¼ 5; 000 on the Extended USPS dataset. But
similar observations can also be obtained in other cases. As
we can see in Fig. 6, the performance of HAGR will not
severely degrade when � varies in a wide range, and
increasing the number of anchor layers does not change the
robustness of �.

6 CONCLUSION

This work proposes a novel Hierarchical Anchor Graph
Regularization approach by exploring multiple-layer
anchors in a pyramid-style structure. It generalizes the con-
ventional graph-based and anchor-graph-based SSL meth-
ods to a hierarchical approach. In HAGR, we perform label
smoothness regularization on all datapoints based on the

finest anchors. By inferring the labels of datapoints started
from the coarsest anchors, we obtain an efficient optimiza-
tion which only involves a small-size reduced Laplacian
matrix. It overcomes the limitations of existing AGR
approach in dealing with extremely large datasets. We also
investigate ANNS to improve the efficiency of the construc-
tion of the hierarchical anchor graph. Experiments on pub-
licly available large-scale datasets of various sizes have
demonstrated the effectiveness of our approach in terms of
computational speed and classification accuracy.
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Scalable Semi-Supervised Learning
by Efficient Anchor Graph Regularization
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Abstract—Many graph-based semi-supervised learning methods for large datasets have been proposed to cope with the rapidly

increasing size of data, such as Anchor Graph Regularization (AGR). This model builds a regularization framework by exploring the

underlying structure of the whole dataset with both datapoints and anchors. Nevertheless, AGR still has limitations in its two

components: (1) in anchor graph construction, the estimation of the local weights between each datapoint and its neighboring anchors

could be biased and relatively slow; and (2) in anchor graph regularization, the adjacency matrix that estimates the relationship

between datapoints, is not sufficiently effective. In this paper, we develop an Efficient Anchor Graph Regularization (EAGR) by tackling

these issues. First, we propose a fast local anchor embedding method, which reformulates the optimization of local weights and obtains

an analytical solution. We show that this method better reconstructs datapoints with anchors and speeds up the optimizing process.

Second, we propose a new adjacency matrix among anchors by considering the commonly linked datapoints, which leads to a more

effective normalized graph Laplacian over anchors. We show that, with the novel local weight estimation and normalized graph

Laplacian, EAGR is able to achieve better classification accuracy with much less computational costs. Experimental results on several

publicly available datasets demonstrate the effectiveness of our approach.

Index Terms—Semi-supervised learning, anchor graph, local weight estimation

Ç

1 INTRODUCTION

IN many real-world classification tasks, we are usually
faced with datasets in which only a small portion of sam-

ples are labeled while the rest are unlabeled. A learning
mechanism called semi-supervised learning (SSL), which is
capable of fully leveraging unlabeled data and labeled data
to achieve better classification, is therefore proposed to deal
with this situation. In recent years, various semi-supervised
learning methods [55] have been developed to adapt differ-
ent kinds of data, including mixture models [6], co-training
[4], semi-supervised support vector machines [18], and
graph-based SSL [54]. This learning mechanism is broadly
used in many real-world applications such as data mining
[30], [34], [35], [36], [52], [53] and multimedia content analy-
sis [14], [15], [24], [25], [49].

In this paper, we focus on the family of graph-based
semi-supervised learning methods. These methods are built
based on a cluster assumption [51]: nearby points are likely
to have the same label. A typical model of these algorithms

consists of two main parts: a fitting constraint and a smooth-
ness constraint, both of which have clear geometric mean-
ings. The former means that a good classification function
should not change too much from the initial label assign-
ment, while the latter means that this function should have
similar semantic labels among nearby points. Based on the
above formulation, these algorithms generally produce sat-
isfying classification results in a manifold space [12], [13],
[20], [40], [45], [50]. Meanwhile, graph-based SSL can be
intuitively explained in a label propagation perspective [54],
i.e., the label information from labeled vertices is gradually
propagated through graph edges to all unlabeled vertices.

Most traditional graph-based learning methods, how-
ever, focus on classification accuracy while ignoring the
underlying computational complexity, which is of great
importance for the classification of a large dataset, espe-
cially given the recent explosive increase in Internet data.
The complexity mainly arises from two aspects. The first
is the kNN strategy for graph construction, and the second
is the inverse calculation of the normalized Laplacian
matrix in optimization. Both of them are time-consuming
and have a large storage requirement.

To reduce the cubic-time complexity, recent studies seek
to speed up the intensive computation of the graph Lapla-
cian manipulation. Anchor graph regularization (AGR) [21],
[22], a recently proposed graph-based learning model for
large datasets, constructs a novel graph with datapoints
and anchors. It reduces the computational cost via subtle
matrix factorization by utilizing the intrinsic structure of
data distribution. It is exactly in linear time with data size.
The anchor graph model has been widely applied to many
applications [8], [19], [41], [42], [43] and achieves satisfac-
tory performance.
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There are two key parts in AGR. The first part is anchor
graph construction, in which a local weight matrix that
measures the relationship between datapoints and anchors
needs to be estimated. The second part is anchor graph reg-
ularization, in which an adjacency matrix that measures the
strength of graph edges needs to be designed. For local
weight estimation, a method called Local Anchor Embed-
ding (LAE) is employed in [21] to replace the conventional
kernel-defined weight computation. However, we will dem-
onstrate the limitation of the optimization objective of LAE.
Moreover, the LAE process is expensive as it involves a gra-
dient descent solver. For adjacency matrix design, Liu et al.
[21] introduce a method that constructs the adjacency
matrix based on local weight matrix. But actually it has
been shown in [21] that the regularization framework can
be equivalent to a regularization on anchors with a
”reduced” graph Laplacian. Therefore, in this work, we pro-
pose a novel approach named Efficient Anchor Graph Reg-
ularization (EAGR) with a novel local weight estimation
method and a more effective normalized graph Laplacian
over anchors. In comparison with AGR, EAGR obtains com-
parable or better accuracy in a shorter time in SSL based
classification tasks.

The main contributions of our work are as follows.

(1) We introduce a novel graph-based SSL approach
that is able to deal with large datasets. By improving
the conventional AGR method, we show that the
proposed EAGR is able to achieve better classifica-
tion accuracy with even much less implementation
time. The EAGR also empirically shows its advan-
tages over many existing SSL methods developed for
large datasets, such as the methods in [26], [47], [48].

(2) We point out the limitation of the conventional local
anchor embedding method and propose a novel
approach for local weight estimation. We reformulate
the objective function of LAE by replacing the inequal-
ity constraint with an absolute operation and obtain
an efficient and effective analytical solution. In addi-
tion, we incorporate the locality constraints into the
objective function to further improve the performance.

(3) Instead of designing an adjacency matrix for all data-
points, we directly compute an adjacency matrix for
anchors by exploring their commonly connected
datapoints. We show that the derived normalized
graph Laplacian over anchors is more effective than
the ”reduced” graph Laplacian in [21]. Graph-based
learning is performed with the corresponding regu-
larization on anchors.

The rest of this paper is organized as follows. In Section 2,
we survey related work. In Section 3, we briefly review the
AGR algorithm and conduct an in-depth analysis of its limi-
tations. The proposed approach EAGR is described in Sec-
tion 4. In Section 5, we conduct experiments on several
publicly available datasets to validate our model. Finally,
we conclude in Section 6.

2 RELATED WORK

In this section, we focus on the related work of graph-
based semi-supervised learning. Once we have constructed
a graph for all datapoints, the labels for classification can

be propagated from limited labeled data to remaining
unlabeled data [17].

For many years, researchers have focused on improving
the classification accuracy of graph-based SSL via designing
more appropriate label propagation models with simple
kNN graph. Zhu et al. [54] advocated the formulation of the
learning problem based on Gaussian random field and gave
intuitive interpretations for their model. Belkin et al. [2] pro-
posed a classification function which is defined only on the
sub-manifold rather than the whole ambient space. Zhou
et al. [51] subsequently suggested the design of a classifica-
tion model which is sufficiently smooth with respect to the
intrinsic structure collectively revealed by the known labeled
and unlabeled points. There are additionally many works
that focus on graph construction to improve classification
accuracy. For instance, Zelnik et al. [46] first stated that it
would be helpful to consider a local scale in computing the
affinity between each pair of points for the edge. Wang et al.
[37] developed a graph-based SSL approach based on a linear
neighborhood model which assumes that each datapoint can
be linearly reconstructed from its neighborhood. Similarly,
Tian et al. [33] proposed learning a nonnegative low-rank
graph to capture global linear neighborhoods. Although
these methods show promising performance in various
applications, they are not sufficiently scalable in terms of
computing and storage costs, which imposes limitations in
handling large datasets.

With the rapid increase in data size, researchers have paid
more attention to designing novel approaches to reduce the
computational cost of graph-based learning. Wang et al. [38]
proposed a multiple random divide-and-conquer approach
to construct an approximate neighborhood graph and
presented a neighborhood propagation scheme to further
enhance the accuracy. Huang et al. [16] proposed a novel
label propagation algorithm in which the label information
is first propagated from labeled instances to unlabeled
instances, and then labels spread among the unlabeled
instances until a steady state is reached. These algorithms
simplify either the graph construction or the label propaga-
tion, and so the computational cost is reduced to some extent.
Additionally, hashing strategies [7], [32], [29] can also be
applied to facilitate large-scale classification.

Recently, Liu et al. [21] proposed an anchor graph regular-
ization approach. The graph is constructed with datapoints
and anchors, which simultaneously reduces computational
cost and storage cost. As a result, the anchor graph model
has been applied to clustering [5], [44], hashing [23], mani-
fold ranking [43], multi-graph learning [9], and tracking [41].
For example, Yang et al. [44] proposed a low-rank learning
method to improve the clustering performance for large-
scale manifold data by a two-step bipartite random walk
through cluster nodes. Cai et al. [5] proposed an efficient
computation of the spectral embedding of data with an
anchor-based representation to improve spectral clustering.
Liu et al. [23] proposed an anchor graph based hashing
method to learn appropriate compact codes with a feasible
computational cost. Xu et al. [43] designed a new adjacency
matrix with the anchor graph to speed up manifold ranking
for image retrieval. Wu et al. [41] presented a local landmark
approximation (LLA) model, which iteratively solves its tar-
get function based on gradient projection. The model is
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applied to visual tracking and achieves state-of-the-art per-
formance. In spite of these, AGR still has some limitations,
which are analyzed and addressed in the following sections.

3 ANCHOR GRAPH REGULARIZATION

In this section, we first review the anchor graph regulariza-
tionmodel and then give a detailed analysis of its limitations.

3.1 Anchor Graph Regularization Formulation

Given a dataset D ¼ fðx1; y1Þ; ðx2; y2Þ; . . . ; ðxl; ylÞ; xlþ1; . . . ;
xng with n samples in d dimensions, we can obtain a set

of representative anchors U ¼ fu1;u2; . . . ;umg 2 Rd�m.
Typically, these anchors are selected by a clustering
method such as K-means. These anchors clearly share
the same feature space with the original datapoints. Let
f : x ! R be a real value function which assigns each
point a label from c distinct classes. Then, once we
obtain a local weight matrix Z that measures the poten-
tial relationships between datapoints and anchors, we
can estimate fðxÞ for each datapoint as a weighted aver-
age of the labels of the anchor set

fðxiÞ ¼
Xm
k¼1

ZikfðukÞ; (1)

with the constraints
Pm

k¼1 Zik ¼ 1 and Zik � 0. Note that the
element Zik represents the local weight between datapoint
xi and anchor uk.

Kernel-defined weights are usually sensitive to hyper-
paramters and lack a meaningful interpretation. To mea-
sure the local weights more robustly, one can adopt a
LLE[31] like objective function with a clear geometric
meaning:

argminzikxi �Uhiizhiik2 (2)

s:t:1Tzhii ¼ 1; zhii � 0;

where hii is a index set of s closest anchors of xi. A standard
quadratic problem (QP) solver can be used to solve Eq. (2).
To achieve a faster optimization, Liu et al. suggested a new
algorithm named local anchor embedding, which employs
Nesterovs method [28] to accelerate the gradient descent.
More details can be found in [21].

Based on the local weights Z ¼ fz1; . . . ; zngT 2 Rn�m, the
adjacency matrix between datapoints can be designed as

W ¼ ZL�1ZT; (3)

where the diagonal matrix L is defined as Lkk ¼
Pn

i¼1 Zik;
k ¼ 1; . . . ;m. From Eq. (3), we can see that if two points are
correlative ðWij > 0Þ, they share at least one common
anchor, and otherwise Wij ¼ 0. It is likely that datapoints
sharing common anchors have similar semantic concepts.

Let Yl ¼ ½y1T; y2T; . . . ; ylT�
T 2 Rl�c denote a class indica-

tor matrix on labeled samples, with Yij ¼ 1 if xi belongs to

class j and Yij ¼ 0 otherwise. Let A ¼ ½a1T; a2T; . . . ; amT�T 2
Rm�c denote the prediction label matrix on the anchor set.
Anchor graph regularization can be naturally formulated to
deal with the standard multi-class SSL problem as follows:

QðAÞ ¼
Xl
i¼1

kzTi A� yik
2 þ g

2

Xn
i;j¼1

WijkzTi A� zTj Ak2

¼ kZlA� Ylk2F þ gtrðATZTðI�WÞZAÞ
¼ kZlA� Ylk2F þ gtrðAT~LAÞ;

(4)

where ~L ¼ ZTðI�WÞZ 2 Rm�m is the reduced Laplacian,

Zl 2 Rl�m is the sub-matrix according to the labeled part of
local weight matrix Z, and g > 0 is a trade-off parameter.

From the above equation, we can see that, although
AGR is performed with a regularization on all data-
points, it is equivalent to a regularization on anchors
with a graph Laplacian ~L. This is understandable, as the
labels of other datapoints are actually inferred from
anchors.

Then, the optimal A can be computed as follows:

A ¼ ðZT
l Zl þ g~LÞ�1

ZT
l Yl: (5)

Finally, we can employ the solved labels associated with
anchors to predict the hard label for unlabeled samples as

byi ¼ argmaxj2f1;...;cg
Zi� �A�j

�j
; i ¼ lþ 1; . . . ; n; (6)

where Zi� 2 R1�m denotes the ith row of Z, A�j 2 Rm�1 is the

jth column of A, and the normalization factor �j ¼ 1TZA�j,
suggested as a useful normalization strategy in [54], balan-
ces skewed class distributions.

3.2 Analysis of Anchor Graph Regularization

The AGR model has been widely used in many applications
for its capability in dealing with relatively large datasets.
However, the approach has limitations in the local weight
estimation and adjacency matrix design, which are analyzed
below.

The first limitation comes from the LAE method for local
weight estimation.We demonstrate this fact by a toy example.
Fig. 1 illustrates a toy example in a 3D space, in which the
LAE method attempts to reconstruct the datapoint x1 by
anchors u1, u2, u3 and minimizes kx01 � x1k2, where x01 is a

reconstructed datapoint. Usually, to follow the shift-invariant
and nonnegativeweight requirements, we introduce two con-

straints 1Tzhii ¼ 1 and zhii � 0 into the geometry reconstruc-

tion problem, as in Eq. (2). We put x1 at the origin of the
coordinate according to the shift-invariant constraint. Under
these constraints, all feasible reconstructed datapoints are lim-
ited in the region enclosed by these anchors, such as simplex
aa, as shown in Fig. 1a. It means that for x1, the value of
kx01 � x1k2 is at least the distance from x1 to aa, i.e., the length

of the blue line segment. Therefore, the best reconstructed
point x	1, following Eq. (2), is the crossover point as shown in
this figure. This point x	1 is on the boundary of the closed
region aa and is linearly reconstructed by merely u1 and u2,
e.g., 0:5� u1 þ 0:5� u2. This is to say, the local weight
between x1 and u3 is zero. In addition, if we set up a plane
along the nearest boundary and make it perpendicular to aa,
namely bb, and then change the positions of these anchors like
Fig. 1b, we can see that this zero weight will not change as
long as u3 and x1 are at different sides of the plane bb, even if
u3 is closer to x1 thanu1 andu2, because the best reconstructed
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point x	1 is still on the boundary. As shown in Fig. 1c, only
when u3 and x1 are at the same side of bb, x	1 will move inside
the simplex aa, and the previous zero weight can change to a
positive value. We have discussed the situation above where
s ¼ 3. However, this geometric interpretation can also be eas-
ily extended to the casewhere s > 3. From Fig. 1d, we can see
the difference is that the region enclosed by anchors now
becomes a closed space, i.e., aa0, and bb0 now lies along the
boundary simplex of aa0 which is closest to x1. Similarly, from
this figure, we can see that the local weight between x1 and
the anchor, which is on the opposite space of bb0, namely u4, is
always zero. In addition to the above problem, computational
cost can also be a disadvantage of LAE, despite several strate-
gies have been applied in [21] to speed up the process.

The second limitation is the adjacency matrix design. After
describing the local connection between datapoints and their
neighboring anchors,we consider building the adjacency rela-
tionship in the whole data space for graph regularization. For
instance, we obtain a part of local weights as listed in Fig. 2a.
To view these values graphically, we also use a toy example
in Fig. 2b to show the relationship between these points,
where the length of the edge represents the Euclidean dis-
tance between the datapoints and anchors. Now, if we calcu-

late the adjacency weight according to Eq. (3) with these local

weights, we have W12 ¼
Pm

k¼1
Z1kZ2k
Lkk

¼ 0:3�0:4
L11

þ 0:4�0:3
L22

þ 0:3�0:3
L33

and W34 ¼
Pm

k¼1
Z3kZ4k
Lkk

¼ 0:1�0:1
L11

þ 0:1�0:1
L22

þ 0:8�0:8
L33

. Further, if

we suppose that Lkk is nearly the same in homogeneous

regions, such as in Fig. 2b, we can obtain W12 ¼ 0:33
Lkk

and

W34 ¼ 0:66
Lkk

. In this context, the adjacency weights of x1&x2 and

x3&x4 can be numerically quite different, although the Euclid-
ean distances between them are nearly the same. Therefore,
this issue is likely to introducemistakes in the remaining steps
of graph-based SSL tasks.

4 EFFICIENT ANCHOR GRAPH REGULARIZATION

To address the above issues in AGR, we accordingly pro-
pose two improvements. First, we introduce a fast local
anchor embedding method in anchor graph construction,
which reformulates the local weight estimation problem to
better measure Z and speeds up optimization. Second, we
directly design a normalized graph Laplacian over anchors
and show that it is more effective than the reduced graph
Laplacian in AGR. More details are given in the following.

4.1 Fast Local Anchor Embedding (FLAE)

Apart from LAE described above, there exist other similar
methods for local weight estimation like LLE [31], LLC
[39], and LLA [41]. However, these methods either do not
enforce weights to be non-negative or impose the non-
negative constraint into objective function via inequality.
In the former cases, non-negative similarity measures can-
not be guaranteed. In the latter cases, limitation still exists
when datapoints are outside of the convex envelope of
anchors, according to the analysis in Section 3.2.

Fig. 1. 3-D toy example for datapoint reconstruction with anchors.

Fig. 2. Example of the adjacency modeling.
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Therefore, here we aim to design a better local weight
matrix Z to tackle these problems. We call our new
weight estimation method Fast Local Anchor Embedding
as we will demonstrate that the optimization problem has
an analytical solution and can be implemented fast. It is
worth mentioning here that, although we use a close
name, the formulation of FLAE and its solution are actu-
ally quite different from the conventional LAE method. In
fact, we have made two changes.

Change 1. Instead of the inequality constraint, we use
absolute constraint in geometric reconstruction. Since the
non-negative property in similar measurement is impor-
tant to guarantee the global optimum of graph-based
SSL [21], inequality constraint has been employed in
most local weight estimation methods, e.g., LAE and
LLA. However, as illustrated in Section 3.2, it would
introduce additional mistakes when the datapoint is out-
side of convex envelope of anchors. Therefore, we
integrate the non-negative property from another per-
spective: absolute operator. To this end, we set

zhii ¼ jchiij and the constraint 1Tjchiij ¼ 1 is imposed to

follow the shift-invariant requirement in our geometric
reconstruction problem. Then, we can obtain the local
weight vector zhii for each datapoint xi, corresponding to

the following problem:

argmin
ci

kxi �Uhiichiik2 (7)

s:t:1Tjchiij ¼ 1:

Compared with LAE, Eq. (7) can be a more direct model
to handle the non-negative property in similarity measure.
However, since there lacks a straightforward solution of the
optimization problem, here we obtain a solution via shrink-
ing the domain of the above problem.

Specifically, we first drop the absolute constraint in our
model, which reduces the problem to a simple coding
problem as:

argmin
ĉhii

kxi �Uhiiĉhiik2 (8)

s:t:1Tĉhii ¼ 1:

And the solution can be derived analytically by:

~chii ¼ Ci
�11; (9)

ĉhii ¼ ~chii=1
T~chii; (10)

where Ci ¼ ðUT
hii � 1xi

TÞðUT
hii � 1xi

TÞT 2 Rs�s is a data
covariance matrix.

Then, we compute our local weight vector zhii after
obtaining the code ĉhii as follows:

r ¼ 1Tjĉhiij (11)

chii ¼ ĉhii=r; (12)

zhii ¼ jchiij: (13)

As we can see, the above solution chii satisfies the

constraint 1Tjchiij ¼ 1, it means this chii is a feasible solu-

tion of Eq. (7). Meanwhile, we can have the following
conclusion.

Proposition 1. The minimum of Eq. (8) will not greater than the
minimum of Eq. (2).

We leave the proof of the proposition to appendix.
Then, our task is to demonstrate that, with the above

solution, the value of the objective function in Eq. (7) is not
greater than the value of Eq. (8) with its optimal solution
ĉhii. If this conclusion can be drawn, it means that our

method can lead to a smaller reconstruction error than LAE,
and the effectiveness of our approach can be validated. The
details are as follows.

Recall that, by solving Eq. (8), we obtain the optimal solu-
tion ĉhii. Clearly, there are two possible cases regarding the
obtained codes ĉij 2 ĉhii : (1) 8 ĉij � 0; and (2) 9 ĉij < 0.

Then, we follow Eqs. (11), (12) to yield codes chii.

For the first case, we obtain chii ¼ ĉhii. It means that the
value of the objective function in Eq. (7) with our feasible
solution is the same with the value of Eq. (8) with its optimal
solution.

We then mainly focus on the second case. Since the
obtained code ĉhii satisfies the constraint 1Tĉhii ¼ 1, we first
substitute it into the objective function in Eq. (8) to yield the
minimum of Eq. (8) as

kxhii1Tĉhii �Uhiiĉhiik
2 ¼ k~Uhiiĉhiik

2
; (14)

where ~Uhii ¼ ½Uhiið:; 1Þ � xi; . . . ;Uhiið:; sÞ � xi� can be viewed
as the new coordinates of s closest anchors of xi in the data-
point-centered coordinate system.

Then, according to Eqs. (11), (12), we scale the code ĉhii in
Eq. (14) by a constant r and obtain the value of the objective
function in Eq. (7) with our feasible solution chii,

k~Uhiichiik
2 ¼ k 1

r
~Uhiiĉhiik

2

¼ 1

r2
k~Uhiiĉhiik

2
: (15)

Since 9 ĉij < 0, we have r > 1. Therefore, we obtain the
inequality relation that the value of Eq. (15) is smaller than
Eq. (14).

Up to now, we have demonstrated that the value of the
objective function in Eq. (7) with our feasible solution is not
greater than the value of Eq. (8) with its optimal solution,
which means we can obtain a smaller reconstruction error
than LAE. Moreover, our analytical solution based on
Eqs. (9)-(13) is much faster than the iterative solution
obtained by LAE.

Change 2. We further incorporate the locality con-
straint into local weight estimation. To enhance coding
efficiency, the locality constraint functions in other
similar methods [21], [41] are replaced by using s closest
anchors (landmarks), like approximated LLC [39] does.
However, this manipulation is insufficiently suitable,
because it ignores the real distance between local
points (an negative example is shown in Fig. 1b). We
therefore suggest keeping the locality constraint while
using s closest anchors in local weight estimation
simultaneously.
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We obtain local weight vector zhii ¼ jchiij according to the
following objective:

argmin
ci

kxi �Uhiichiik2 þ �kdhii 
 chiik2 (16)

s:t:1Tjchiij ¼ 1;

where 
 denotes the element-wise multiplication. dhii is the
locality adaptor that allows a different freedom for each
anchor proportional to its distance to the datapoint xi. Spe-
cifically,

dhiiðkÞ ¼ exp
kxi �Uhiið:; kÞk2

s

 !
; k ¼ 1; . . . ; s (17)

where the parameter s is used to adjust the weight decay
speed for the locality adaptor.

Similarly, we can obtain a feasible solution as before. The
only change compared to the pervious processes is that we
replace Eq. (9) with

~chii ¼ ðCi þ � diagðdhiiÞÞ�11: (18)

To summarize, we demonstrate the steps of FLAE in
Algorithm 1.

Algorithm 1. Fast Local Anchor Embedding (FLAE)

Input: datapoints fxigni¼1 2 Rd�1, anchor set obtained from K-

means U 2 Rd�m, parameters s and �.
for i ¼ 1 to n do
1. For xi, find s nearest neighbors in U and record the index

set hii.
2. Measure the locality adaptor dhii for datapoint xi with its

nearest neighbors Uhii via Eq. (17).

3. Compute the code chii via Eq. (18), and Eqs. (10)-(12).
4. Obtain the final solution zhii via Eq. (13).
5. Zi;hii ¼ zThii.

end for
Output: FLAE matrix Z .

4.2 Normalized Graph Laplacian over Anchors

We consider a graph as a stable one if it satisfies the cluster
assumption, which means nearby datapoints are likely to
have the same labels. Obviously, it is important for building
a well performed anchor-graph-based SSL classification
model. In Section 3.2, we have observed the limitation of the
anchor graph built based on the conventional adjacency
between datapoints. As demonstrated in Section 3.1, in
anchor graph regularization, the regularization on all data-
points is actually equivalent to regularization on anchors
with a reduced graph Laplacian, which is built over only
anchors. Therefore, here we directly design an adjacency
matrix among anchors and then derive a normalized graph
Laplacian over anchors. For clarity, we use the subscripts
i; j; k and s; t; r to denote the indices of datapoints
and anchors respectively in this section. The details are
as follows.

Recall that the label for each datapoint is estimated as a
weighted average of the labels of the anchor set via Eq. (1),
which only involves the local weight vector of the datapoint

and the labels of its nearest anchors. Given local weights,
the label vectors of the nearest anchors are crucial to the
final label prediction for the datapoint. If two nearby data-
points share a lot of nearest anchors, their labels are likely
to be similar. However, nearby datapoints are not guaran-
teed to have identical nearest anchors quite often. Fig. 3
illustrates a toy example, where the nearest anchors of
nearby pairwise datapoints x1 and x2 are the same while
those of x1 and x3 are not. We prefer the Laplacian matrix
has the following characteristics: 1) the elements corre-
sponding to the nearby pairwise anchors should be nega-
tive, which means these anchors tend to have similar labels;
2) the elements corresponding to dissimilar pairwise
anchors should be zero, which means their labels are irrele-
vant [27]. To this end, we design the adjacency matrix
between anchors as

W ¼ ZTZ; (19)

where Wst ¼
Pn

k¼1 ZksZkt. Accordingly, its normalized
Laplacian matrix is

�L ¼ I�D�1=2WD�1=2; (20)

where the diagonal matrix D is defined as Dss ¼
Pm

t¼1 Wst.
Note that our adjacency matrix actually explores all data-
points as the transitional points rather than anchors alone.
Thus, our model keeps the computational efficiency of the
anchor graph regularization and its effectiveness in
regularization.

As for AGR, it constructs an n� n adjacency matrix as

W ¼ ZL�1ZT. Based on this, AGR employs the following

reduced Laplacian matrix ~L over anchors for its regulariza-
tion function

~L ¼ ZTðI� ZL�1ZTÞZ; (21)

¼ ZTZ� ZTðZL�1ZTÞZ:

Now we compare the two m�m Laplacian matrices
over anchors, according to the previously mentioned char-
acteristics. For convenience, we take a non-diagonal element
Lst for example, which is computed as

Lst ¼
�aZT�s Z�t for EAGR;

ZT�s Z�t � ZT�s ðZL
�1ZTÞZ�t for AGR ;

(
(22)

where a ¼ ðDssDttÞ�
1
2, Z�s 2 Rn�1 denotes the sth col of Z.

We discuss the sign of Lst in the following two cases
according to the relations of the pairwise anchors us&ut.

(1) The first case is that us&ut share at least one common
datapoint xi, namely, they are nearby. For EAGR,

we clearly have Lst ¼ �aZT�s Z�t � �aZisZit < 0.

Fig. 3. Toy example of the nearest anchors of datapoints.
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However, for AGR, the sign of the element Lst

depends on the values of ZT�s Z�t and ZT�s ðZL
�1ZTÞZ�t.

Therefore, the element Lst can be positive, zero, or
negative. If Lst > 0, these nearby anchors tend to
have different labels. If Lst ¼ 0, these nearby anchors
tend to be irrelevant. When Lst < 0, we can obtain
the expected result, that is, nearby anchors tend to
have similar labels. In short, the labels of nearby
pairwise anchors in EAGR are enforced to be similar,
while this is uncertain for AGR.

(2) The second case is that us&ut does not share any
common datapoint, namely, they are dissimilar.

For EAGR, we have Lst ¼ �aZT�s Z�t ¼ 0. However,

for AGR, although ZT�s Z�t is zero, ZT�s ðZL
�1ZTÞZ�t

may still be positive, which makes Lst negative.
For example, anchors us&ut connect with two
different datapoints xi&xj respectively, and these
datapoints share another anchor ur simulta-
neously. Then, we obtain Lst < 0, since

Lst ¼ 0� ZT�s ðZL
�1ZTÞZ�t < 0� Zis ðZL�1ZTÞijZjt,

where ðZL�1ZTÞij � ZirL
�1
rr Zjr > 0 and Zis > 0,

Zjt > 0. Therefore, unexpected negative Laplacian
weights could exist between dissimilar anchors in
AGR model while our EAGR is free from this
situation.

Later in Section 5.2, based on real-world datasets, we will
show several examples by comparing the number of non-
zero elements at the non-diagonal positions of the above
m�m Laplacian matrices. In conclusion, based on the pro-
posed W, we can better describe the adjacency between
anchors and make the smoothness constraint more effective
for the stable anchor graph construction. As the common
linked datapoints are used as transitional points in building
W, we note that our adjacency matrix W is totally different
from the simple kNN graph, which only depends on the
sparse anchors themselves.

4.3 Learning on Anchor Graph

Now we consider a standard multi-class SSL task. Given a
set of labeled datapoints xi ði ¼ 1; . . . ; lÞ with the corre-
sponding discrete label yi 2 f1; . . . ; cg, our goal is to
predict the labels on the remaining unlabeled real data-

points associated with anchors. Let Yl ¼ ½y1T; y2T; . . . ;
yl

T�T 2 Rl�c denote a class indicator matrix on labeled data-

points with Yij ¼ 1 if xi belongs to class j and Yij ¼ 0 other-
wise. Suppose that, for each datapoint, we obtain a label

prediction function ffi ¼ zTi A where A ¼ ½a1T; a2T;
. . . ; am

T�T 2 Rm�c denotes the prediction label matrix on the

anchor set. Specifically, ai 2 R1�c is the label vector of the

anchor ui. Then, we combine anchors with datapoints to
build a model called Efficient Anchor-Graph Regularization
(EAGR) for SSL as follows:

argmin
A

Xl
i¼1

kzTi A� yik
2 þ g

2

Xm
i;j¼1

Wijk
aiffiffiffiffiffiffiffi
Dii

p � ajffiffiffiffiffiffiffi
Djj

p k
2
: (23)

We can also present this optimization problem in the fol-
lowing matrix form:

argmin
A

kZlA� Ylk2F þ gtrðAT�LAÞ; (24)

where �L ¼ I�D�1=2WD�1=2 2 Rm�m is the previously intro-
duced normalized Laplacian matrix, k � kF stands for the
Frobenius norm, and g > 0 is the trade-off parameter.

With simple algebra, we can obtain a globally optimal
solution for the anchors’ label matrix as follows:

A ¼ ðZT
l Zl þ g�LÞ�1

ZT
l Yl: (25)

This yields a closed-form solution for handling large
scale SSL tasks. Lastly, like AGR, we utilize the local weight
matrix with anchors’ soft scores to predict the hard labels
for unlabeled datapoints as Eq. (6).

To summarize, our EAGR consists of the following
steps: (1) finding anchors by K-means; (2) estimating the
local weight matrix Z by FLAE, as illustrated in Algo-
rithm 1; (3) computing the normalized Laplacian matrix
�L over anchors via Eq. (20); (4) carrying out the graph
regularization via Eq. (25); and (5) predicting the hard
labels on unlabeled datapoints via Eq. (6). As we can
see, our EAGR keeps the simplicity of AGR and tends to
be much faster, since it efficiently solves the local weight
estimation with FLAE. To be clear, Tables 1 and 2 show
the storage costs and time complexity of several semi-
supervised learning algorithms, where n is the number
of datapoints, m is the number of anchors, s is the num-
ber of the closest anchors to a datapoint, d is the dimen-
sion of features, and t is the number of iterations in the
corresponding iterative optimization process.

TABLE 1
Comparison of Storage Costs of Three Graph-Based Methods

Approach Storage

Learning with Local and Global Consistency (LLGC) [51] Oðn2Þ
Anchor Graph Regularization (AGR) [21] OðmnÞ
Efficient Anchor Graph Regularization (EAGR) OðmnÞ

TABLE 2
Comparison of Computational Complexities of Three Graph-Based Methods

Approach Find anchors Design Z (reduced) graph Laplacian L Graph Regularization

LLGC _ _ Oðdn2Þ Oðn3Þ
AGR OðmndtÞ Oðmnsþ s2dntÞ Oðm2nÞ Oðm2nþm3Þ
EAGR OðmndtÞ Oðmnsþ s2dnÞ Oðm2nÞ Oðm2nþm3Þ
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5 EXPERIMENTS

5.1 Data Settings

To evaluate the performance of our EAGR, we conduct
experiments on five widely-used handwritten datasets:
Binary Alphadigits1 (Alphadigits for short), USPS1,
MNIST2, Semeion,2 and Letter Recognition2 (Letter for
short). Following the settings of [21], we divide them into
three groups based on their sizes, that is, number of sam-
ples. It is worthwhile to note that the images in Letter
have already been converted into 16 primitive numerical
attributes (statistical moments and edge counts) to repre-
sent each sample. In other datasets, samples are still pixel
images of different size. For these datasets, we directly
use a high-dimensional vector of normalized grayscale
values to represent each instance. The attributes of these
datasets are listed in Table 3. All the experiments are
implemented on a 2.4 GHz CPU, 32 GB RAM PC.

5.2 On the Two Improvements in EAGR

Before comparing our EAGR with other methods, we con-
duct two experiments to validate the effectiveness of the
two improvements described in Sections 4.1 and 4.2 respec-
tively. For a fair comparison, we define two intermediate
versions between AGR and EAGR as:

(1) AGRþ, which employs FLAE for estimating Z and
use the reduced Laplacian matrix in Eq. (21).

(2) EAGR� , which employs LAE for estimating Z and
use the normalized Laplacian matrix in Eq. (20).

The differences of the methods for comparison are also
summarized in Table 4. For the involved parameters, we
simply set anchor number to 500 and empirically set s to 3
to make the anchor graph sparse. We tune other parameters,
i.e., � and g, to their optimal values. In this way, we can pro-
vide a fair comparison for these algorithms. We randomly
select 10 labeled samples per class and leave the remaining
ones unlabeled for SSL models in this section.

Table 5 shows the classification accuracies of the four dif-
ferent methods. Table 6 presents the average CPU time (in
seconds) of two local estimation methods on different data-
sets. Meanwhile, Table 7 illustrates the number of nonzero
elements at the non-diagonal positions in different Lapla-
cian matrices as mentioned in Sectioin 4.2. From the results,
we have two observations as follows.

First, by comparing AGR+ with AGR, we see that the for-
mer has comparable or better performances than the latter.
In addition, Table 6 reveals that our proposed FLAE in
AGR+ is much faster than LAE in AGR. These performances
demonstrate the efficiency of our improvement on the local
weight estimation.

Second, by comparing EAGR- with AGR, we see that,
although two methods use the same optimized Z, the
EAGR- has better classification performance than AGR on
all five datasets. We can see from Table 7 that the normal-
ized graph Laplacian of EAGR- has less non-zero elements
than the reduced graph Laplacian of AGR. This means that,
with a sparse normalized graph Laplacian, several incorrect
links have been removed.

5.3 Comparison with Other Methods

Here we further compare the proposed EAGR approach
with the following methods.

(1) FLAE-based label inference, which constructs the
local matrix between unlabeled datapoints and the
labeled ones with FLAE, and then predicts labels for
unlabeled datapoints. This method actually introdu-
ces FLAE into the kernel regression approach [3],
since each row vector zi of Z is non-negative and
normalized. The method is denoted as “FLAE-LI”.

(2) The Eigenfunctions method introduced in [11],
which solves the semi-supervised problem in a
dimension-reduced feature space by only working
with a small number of eigenvectors of the Lapla-
cian. The method is denoted as “Eigenfucntion”.

(3) Laplacian Support VectorMachines Trained in the Pri-
mal with preconditioned conjugate gradient, which is
introduced in [26]. We first decompose a c-class classi-
fication problem into c one-versus-rest binary classifi-
cation problems. Prediction is then made by assigning
the sample to the class with the highest decision func-
tion value. Themethod is denoted as “LapSVMp”.

(4) Learning with local and global consistency in [51],
which is a typical graph-based learning method. It
directly computes the affinity matrix with Gaussian
kernel. In our experiments, we use the 6NN strategy
in graph construction and use Gaussian kernel for
weighting the edges. The method is denoted as
“LLGC”.

(5) Prototype Vector Machines with the Square Loss in
[47], [48], which is a scale-up graph-based semi-
supervised learning for multi-label classification
tasks using a set of sparse prototypes derived from
the data and the Gaussian kernel is used to define
the graph affinity. The method is denoted as “PVM”.

(6) Anchor Graph Regularization, which employs clus-
tering centers as anchors with LAE, is proposed in
[21]. It is the prime counterpart in our experiments,
and we aim to improve its performance. The method
is denoted as “AGR”.

Since the last two methods and EAGR are based on either
the anchors or the prototypes, we group them into
“landmark-based learning” methods and perform K-means
to obtain these cluster centers as the landmarks. Aiming at a
fair comparison, the radius parameters of the Gaussian ker-
nel in the methods (2-4) are set by five-fold cross-validation.
The trade-off parameters in regularization of the above
methods are empirically tuned to their optimal values.

5.3.1 Small Size Datasets

We first conduct experiments on two small datasets: Alpha-
digits and Semeion. For the three landmark-based methods,

TABLE 3
Details of the Five Datasets

Alphadigits Semeion USPS Letter MNIST

# of instances 1,404 1,593 11,000 20,000 60,000
# of categories 36 10 10 26 10
# of features 320 256 256 16 784

1. available at http://cs.nyu.edu/~roweis/data.html
2. available at http://archive.ics.uci.edu/ml/

WANG ETAL.: SCALABLE SEMI-SUPERVISED LEARNING BY EFFICIENTANCHOR GRAPH REGULARIZATION 1871

http://cs.nyu.edu/
http://archive.ics.uci.edu/ml/


we empirically set the landmark number to 500 and
l ¼ f1; 2; . . . ; 10g labeled samples per class. The average
classification accuracies with standard deviations over 10
trials are illustrated in Fig. 4. As a general trend, it can be
seen that, as the number of labeled data increases, the per-
formances of all methods become better. In addition, we
observe that the performances of the LapSVMp, LLGC,
PVM, AGR, and EAGR methods stay at a higher level than
Eigenfunction. The reason is that the former produce a
good complete graph to model the data distribution, while
the latter builds a backbone graph only. Specifically, the
proposed EAGR method has the similar standard devia-
tions with AGR, and it achieves the best accuracy among all

landmark-based SSL methods in most cases, which demon-
strates the effectiveness of the improved relationship
modeling.

Besides classification accuracies, we record the imple-
mentation time costs of the above algorithms with 10
labeled samples per class in Table 8. It is noted that the time
costs of K-means clustering in the three landmark-based
SSL methods are listed separately in the table and the time
excluding clustering is listed at the right side. As can be
seen, excluding the time costs of K-means, our EAGR
method is faster than AGR and PVM, which demonstrates
the efficiency of our improvement among landmark-based
methods. Although the total time costs of these landmark-

Fig. 4. Classification accuracy versus the number of labeled samples on small-size datasets.

TABLE 4
Comparison of AGR, EAGR, AGR+, and EAGR-

AGR AGR+ EAGR- EAGR

local weight matrix Z LAE FLAE LAE FLAE
(reduced) graph Laplacian ZTZ� ZTðZL�1ZTÞZ ZTZ� ZTðZL�1ZTÞZ I�D�1=2ZTZD�1=2 I�D�1=2ZTZD�1=2

For AGR and AGR+, we demonstrate the reduced graph Laplacian over anchors.

TABLE 5
Comparison on Classification Accuracy (Mean�std) of Different Anchor-Graph-Based Approaches

AGR AGR+ EAGR- EAGR

Alphadigits 64:43� 1:06 65:21� 1:32 65:27� 0:76 65:92� 0:71
Semeion 85:16� 1:25 87:05� 1:10 85:31� 0:92 87:17� 1:33
USPS 86:53� 1:34 86:21� 1:46 87:62� 1:20 87:21� 1:33
Letter 57:35� 0:81 60:40� 0:97 58:28� 0:97 61:31� 1:04
MNIST 86:66� 1:14 86:51� 1:19 88:54� 1:06 88:45� 0:94

TABLE 6
Comparison on the Time Costs (Seconds) of
Different Local Weight Estimation Approaches

LAE FLAE

Alphadigits 2.03 0.23
Semeion 2.34 0.28
USPS 15.81 1.80
Letter 27.35 2.80
MNIST 79.06 11.01

TABLE 7
Number of Non-Zero Elements at the Non-Diagonal
Positions in Different Graph Laplacian Matrices

Alphadigits Semeion USPS Letter MNIST

AGR 19,580 21,540 189,330 152,556 697,658
EAGR- 3,340 3,540 25,252 24,276 68,172

For AGR, we count the numbers in reduced graph Laplacian matrices over
anchors. We can see that the normalized graph Laplacian of EAGR- is more
sparse.
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based methods are larger than LLGC on these small data-
sets, we will see that LLGC will be quite slow on large data-
sets. Here we have simply used K-means to obtain cluster
centers like [21], as clustering is not the focus of this work.
In fact, many fast clustering algorithms can be explored to
improve the speed of this process [1], [10].

5.3.2 Medium Size Datasets

For the USPS and Letter datasets, we empirically set the
landmark number to 2,000 by taking both effectiveness and
efficiency into consideration. Averaged over 10 trials, we
calculate the classification accuracies with standard devia-
tions for the referred methods. The results of USPS and Let-
ter are shown in Fig. 5. Here we have the following three
observations. First, although FLAE-LI produces reasonable
results, it has lower accuracy than semi-supervised methods
in most cases. This demonstrates the importance of graph
construction which utilizes unlabeled samples in regulari-
zation. Second, although all the methods perform poorly
when the number of labeled samples is small, the two
anchor-graph-based methods are clearly superior to LLGC.
A possible reason is that the fitting constraints of both AGR
and EAGR are built on the labeled samples while the
constraints of LLGC are built on the whole set. The fitting
effects of AGR and EAGR, therefore, are more biased

towards labeled information than that of LLGC. Third,
when the number of labeled samples increases, the perform-
ances of all methods become better and the accuracy of
EAGR improves more significantly than AGR. The reason is
that, as the number of labeled samples increases, these clas-
sifiers model the characteristics of different classes better.
However, this increase also makes the classifiers tend to be
overfitted, which needs to be handled by an effective
smoothness constraint. Owning to the better relationship
modeling in the data space to meet this requirement, EAGR
addresses the limitation of AGR as expected.

We also demonstrate the implementation time costs of
the above algorithms with 10 labeled samples per class in
Table 9. We can observe that, although LapSVMp is faster
than LLGC, it is still computationally expensive on the
larger data set, e.g., Letter, as its time complexity is qua-
dratic with respect to n. The landmark-based learning algo-
rithms, especially EAGR, need much less implementation
costs than LLGC. In addition, the K-means clustering pro-
cess accounts for the main portion of the EAGR’s time cost.
Therefore, if we can reduce the clustering time by employ-
ing other fast clustering algorithms [1], [10] or just selecting
a part of the database samples to run K-means like [43], the
advantage of our EAGR over the other two in terms of
speed is expected to be greater.

TABLE 8
Time Costs (Seconds) of the Compared Learning Algorithms on Small-Size Datasets

Landmark-based Learning Others

K-means AGR EAGR PVM FLAE-LI Eigenfunction LapSVMp LLGC

Alphadigits 2.10 +2.17 +0.28 +0.32 0.14 0.95 7.25 0.73
Semeion 2.01 +2.48 +0.30 +0.34 0.13 0.73 1.13 0.83

Fig. 5. Classification accuracy versus the number of labeled samples on medium-size datasets.

TABLE 9
Time Costs (Seconds) of the Compared Learning Algorithms on Medium-Size Datasets

Landmark-Based Learning Others

K-means AGR EAGR PVM FLAE-LI Eigenfunction LapSVMp LLGC

USPS 59.00 +20.72 +4.45 +16.43 0.69 4.95 56.68 120.67
Letter 11.15 +35.42 +7.16 +25.04 1.14 1.09 139.39 432.73
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5.3.3 Large Size Dataset

For the MNIST dataset, we empirically set the landmark
number to 2,000 in the three landmark-based methods.
Fig. 6 shows the results of the algorithms on MNIST.
We can observe that the two anchor-graph-based meth-
ods are clearly superior to LLGC when the number of
labeled samples is small. Similar to the results in the pre-
vious experiments, we see that our method achieves

better performance than AGR and PVM. Meanwhile,
Table 10 also demonstrates that our EAGR is more
advantageous than the AGR and PVM methods in terms
of speed for the large dataset.

5.4 On the Parameters � and g

Finally, we test the sensitivity of the two parameters � and g

involved in the proposed algorithm. For convenience, we
simply set anchor number to 500 and empirically set s ¼ 3.
We first set g to 1 and vary � from 0.001 to 1,000. Fig. 7
shows the performance curve with respect to the variation
of �. From the figure, we observe that our method consis-
tently outperforms AGR, and the performances stay at a sta-
ble level over a wide range of parameter variation. We then
vary the value of g from 0.001 to 1,000 for both EAGR and
AGR (� ¼ 10). Fig. 8 demonstrates the performance varia-
tion. We can see that EAGR is superior to AGR when g

varies in a wide range and the curve of EAGR has a peak
when g ¼ 1 in most cases. These observations demonstrate
the robustness of the parameter selection in applying our
method to different datasets.

6 CONCLUSION

This work introduces a novel scalable graph-based semi-
supervised learning algorithm named Efficient Anchor
Graph Regularization (EAGR). It improves the AGR
approach in the following two aspects. First, in anchor graph

Fig. 6. Classification accuracy versus the number of labeled samples on
the large-size dataset.

TABLE 10
Time Costs (Seconds) of the Compared Learning Algorithms on Large-Size Dataset

Landmark-Based Learning Others

K-means AGR EAGR PVM FLAE-LI Eigenfunction LapSVMp LLGC

MNIST 168.43 +130.07 +35.15 +87.74 5.59 27.40 3296.71 9521.15

Fig. 7. Average performance curves of EAGR with respect to the variation of �. Here, the number of labeled samples is set to 10 per class.
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construction, it employs a novel fast local anchor embedding
method to better measure the local weights between data-
points and neighboring anchors. Second, in anchor graph
regularization, it employs a novel normalized graph Lapla-
cian over anchors, which works better than the reduced
graph Laplacian in AGR. For each improvement, we have
provided an in-depth analysis on the limitation of the con-
ventional method and the advantages of the new method.
Experiments on publicly available datasets of various sizes
have validated our EAGR in terms of classification accuracy
and computational speed.

APPENDIX

PROOF OF PROPOSITION 1

First, we present the following lemma.

Lemma 1. Suppose f1 is the minimization problem with objective
function g in domain A, f2 is the minimization problem with
the same objective function g in domain B, and B 
 A, then
for the optimal solution to f1, e.g., xA, and the optimal solution
to f2, e.g., xB, we have gðxAÞ � gðxBÞ.

The proof of the above lemma is clear. Since xB is the
optimal solution to f2 in domain B, we have xB 2 B. Note
B 
 A, so xB 2 A. Therefore, if gðxAÞ > gðxBÞ, xA is not the
optimal solution to f1 in domain A.

Now we prove Proposition 1. Clearly, both Eq. (8) and
Eq. (2) have the same objective function. In addition, if A

denotes the domain of Eq. (8), i.e., 1Tĉhii ¼ 1 and B

denotes the domain of Eq. (2), i.e., 1Tzhii ¼ 1; zhii � 0, we

have B 
 A. According to LEMMA 1, the minimum of
Eq. (8) is not greater than the minimum of Eq. (2), which
completes the proof.
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a b s t r a c t

Manifold learning based dimensionality reduction methods have been successfully applied in many
pattern recognition tasks, due to their ability to well capture the underlying relationship between data
points. These methods, however, meet some challenges in terms of the storage cost and the computation
complexity with the rapidly increasing data size. We propose an improved dimensionality reduction
algorithm called Anchorgraph-based Locality Preserving Projection (AgLPP), trying to cope with the
limitations via a novel estimation of the relationship between data points. We extend AgLPP into a kernel
version, and reformulate it into a novel sparse representation. The experiments on several real-world
datasets have demonstrated the effectiveness and efficiency of our methods.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In many real world applications, vectors of data representation
often lie in high dimensional spaces, which makes large deviation
to the similarity measure of features and brings high computational
costs for classification and retrieval tasks [1–6] in various multi-
media applications. Reducing the dimensionality of feature while
capturing the discriminative information, therefore, becomes an
important role in data preprocessing.

One of the classical dimensionality reduction algorithms is
Principal Component Analysis (PCA) [7], which searches a set of
orthogonal basis functions to capture the direction of maximum
variance of data distribution. However, PCA has its limitations in
addressing nonlinear data in many real applications, because it is
based on the assumption that data can be embedded in a linear
subspace of lower dimensionality.

To cope with the nonlinear data, dimensionality reduction
methods based on manifold learning have been proposed and pro-
duced impressive results. For example, Isomap [8] is an approach
which preserves certain inter-point relationships via the underlying
global geometry. Locally Linear Embedding (LLE) [9] and Laplacian
Eigenmap (LE) [10] are the methods that preserve the local geometry
of the manifold with different measuring principles respectively.
These approaches deal with fixed training sets well. However, as they
do not produce an explicit mapping function between high and low
dimensional spaces, they cannot be applied to new data points.

Later, He et al. [11] proposed an approach called Locality Pre-
serving Projection (LPP), which incorporates the linear embedding
assumption into manifold learning. LPP can effectively deal with
both fixed training data and new data points. This method can be
conducted in the reproducing kernel Hilbert space (RKHS) via ker-
nel tricks as well.

These manifold-based dimensionality reduction methods,
however, meet some challenges now because of the rapidly
increasing data size. First, they are supposed to construct a graph
with size OðN2Þ to measure the adjacency relationship. Second,
they need to solve a generalized eigenvalue problem for an N � N
matrix with OðN3Þ complexity when conducted in Hilbert space via
kernel tricks. Both of the above processes introduce huge temporal
and storage cost for the data preprocessing.

In this paper, we propose a novel manifold-based linear
dimensionality reduction method, called Anchorgraph-based
Locality Preserving Projection (AgLPP). Given a large set of data
points, we first adopt the clustering algorithm to obtain a small
number of clustering centers as virtual anchors, which have been
validated to have a stronger representation power to adequately
cover the vast point cloud in [12–15]. Then by regarding these
anchors as transformation points, we measure the point-to-point
relationship between real data points in two steps. Finally, based on
the adjacency matrix of this novel relationship, the time and storage
cost of AgLPP can be linear with respect to data size. The con-
tributions of this paper are highlighted as follows. First, as AgLPP
keeps the linear embedding assumption of LPP, this method can be
applied to any new data point to locate the mapped position in the
reduced representation space. We additionally extend AgLPP to a
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kernel version and reformulate it into a novel sparse representation.
Second, our AgLPP and its two extended variants compute the
mapping functions for nonlinear data with Anchorgraph. As a result,
the dimensionality reduction on a large scale database can be
implemented with fewer temporal and storage costs. Third, we
conduct experiments to empirically validate our methods on five
datasets. The experimental results demonstrate better effectiveness
and efficiency of our methods.

The rest of this paper is organized as follows. In Section 2, we
briefly discuss some related work. Our AgLPP is introduced in
Section 3. In Section 4, we present the experiment results on
several real world databases. Finally we conclude the paper in
Section 5.

2. Related work

We focus on the dimensionality reduction models which are
designed to cope with nonlinear data, because many kinds of real-
world data lie on or near the manifold of the high dimensional space.

One popular family of these models is the manifold-based
dimensionality reduction method, which is designed to keep the
inter-point similarity from the original high dimensional space to the
low one. For many years, researchers have focused on preserving the
global property of the whole point set. Kruskal et al. [16] advocated
expressing the quality of mapping by a stress function, which is
based on the error between the pairwise distances in the low
dimensional and high dimensional representation of the data.
Tenenbaum et al. [8] proposed a method named Isomap, which aims
at preserving the pairwise geodesic distances between data points by
utilizing shortest-path algorithms. Weinberger et al. [17] suggested
the formulation which maximizes the Euclidean distances between
the data points while retaining the distances in the neighborhood
graph. Apart from global properties, researchers have also been
focusing on methods that preserve local properties of neighborhood
points, because many experiments have vindicated that via pre-
servation of local properties of the data, the global layout of the data
manifold is retained as well. Roweis et al. [9] proposed the for-
mulation that attempts to discover nonlinear structure in high
dimensional data by exploiting the local symmetries of the linear
reconstruction and retain these reconstruction weights in the space
of lower dimensionality as good as possible. Similarly, Belkin et al.
[10] proposed Laplacian Eigenmap, which is conducted in a weighted
manner where the distance in the low dimensional data repre-
sentation between a data point and its first nearest neighbor con-
tributes more to the cost function than the distance between the data
point and its second nearest neighbor. Donoho et al. [18] subse-
quently suggested the design of a mapping model that minimizes the
‘curviness’ of the high dimensional manifold when embedding it into
a low dimensional space, with the constraint that the low dimen-
sional data representation is locally isometric. Although these
approaches deal with the fixed training set well, they have difficulties
in being directly applied to new data points, due to the lack of an
explicit mapping function between high and low dimensional spaces.
To address this issue, He et al. suggested incorporating the linear
embedding assumption into these manifold learning methods and
proposed the linear approximations for these original nonlinear
methods [11,19,20]. As these manifold learning methods have a good
ability to capture the structure of nonlinear data, they are broadly
adopted in many real-world applications, such as [21,22].

Another important family of models is kernel based dimen-
sionality reduction methods. By applying different kernels, these
methods implicitly map data into higher dimensional spaces, where
the nonlinear data become linear or near linear. For instance,
Schölkopf et al. [23] proposed a reformulation of traditional linear
PCA in a high dimensional space, which computes the principal

eigenvectors of the kernel matrix rather than the covariance matrix.
Based on this work, Ham et al. [24] stated the kernel view of some
manifold based dimensionality reduction methods. However, the
choice of the kernel types plays an important role in kernel PCA.
Weinberger et al. [25] suggested learning a kernel matrix instead,
where the model is constructed by maximizing the variance in
feature space while preserving the local angle and distance
between nearest neighbors. Similarly, Zimmer et al. [26] presented
a method to automatically choose a kernel function and its asso-
ciated parameters from a pool of kernel candidates to generate the
most optimal manifold embedding. To address the lack of an
explicit out-of-sample extension of non-parametric dimensionality
reduction techniques, Gisbrecht et al. [27] extended the t-dis-
tributed stochastic neighbor embedding to a kernel version.

Meanwhile, sparse dimensionality reduction is also becoming an
emerging important research direction, which clearly maps the data
into a meaningful space with learnt basis instead of implicitly map-
ping into the higher one as kernel methods. For instance, Han et al.
[28] formulated the construction of the low-dimensional consensus
representation to approximate the matrix of patterns by means of a
low-dimensional consensus base matrix and a loading matrix, and
proposed a sparse unsupervised dimensionality reduction for mul-
tiple view data. Zhu et al. [29] proposed the self-taught dimension-
ality reduction on the high-dimensional small-sized data via map-
ping the target data into the learnt basis space which is learnt from
sufficient external data. Kandel et al. [30] proposed a sparse
dimensionality reduction method for multi-modal medical image
analysis via clustering sparse eigenvectors and selecting a subset of
the eigenvectors. Shi et al. [31] presented a framework by combining
the objective functions of graph embedding and sparse regression to
explore the significant features of data for dimensionality reduction.

Apart from the traditional unsupervised dimensionality reduc-
tion methods, some methods with labeled information used
recently are also proposed to cope with specific situations. For
instance, Cheng et al. [32] extended LPP to a supervised one in
which the geometric relation is preserved according to prior class-
label information. Yan et al. [33] proposed a supervised dimen-
sionality reduction algorithm called Marginal Fisher Analysis (MFA),
where the intrinsic graph characterizes the intra-class compactness
and connects each data point with its neighboring points of the
same class, while the penalty graph characterizes the inter-class
separability and connects the marginal points. Gui et al. [34] pro-
posed a method called Discriminant Sparse Neighborhood Preser-
ving Embedding (DSNPE), which not only preserves the sparse
reconstructive relationship of SNPE, but also sufficiently utilizes the
global discriminant structures. Li et al. [35] defined a novel non-
parametric manifold-to-manifold distance to model separability
between manifolds, where both labels and local structure infor-
mation of manifolds are considered. Hashing methods [36–38] can
be also an alternative for the task of dimension reduction.

3. Dimensionality reduction on Anchorgraph

In order to incorporate scalable relationships of large databases
into the manifold-based dimensionality reduction methods, a
natural way is to perform learning tasks on Anchorgraph [12–13].
In this section, we will describe our AgLPP which is based on
Locality Preserving Projection and Anchorgraph construction (A
flowchart is shown in Fig. 1). We begin with the description of
Locality Preserving Projection [11].

3.1. Locality Preserving Projection

Given a set X¼ x1; x2;…; xn A RD�n, the generic problem of the
linear dimensionality reduction method is to find a transformation
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matrix A¼ a1; a2;…; ad A RD�d that maps the original high
dimensional set X to a low dimensional set Y¼ y1; y2;…; yn A
Rd�nðdoDÞ, where yi ¼ATxi.

Let G¼ ðV;EÞ be the weighted graph with edges which connect
nearby points to each other. LPP considers mapping the weighted
graph G into a low dimensional map where the connected points
stay as close as before. If Y is such a map, a reasonable criterion for
obtaining a good map is to minimize the following objective
function:

X
ij
Wij yi�yj

� �2
ð1Þ

This clearly makes a strong penalty if that neighboring points xi

and xj are mapped far apart. That is to say, minimizing the above
function is equal to keeping a close similarity between the pair of
xi&xj and the pair of yi&yj.

Suppose a is a transformation vector in A, with simple algebra
derivation, Eq. (1) can be reduced to

1
2

P
ij yi�yj

� �2
Wij ¼ 1

2

P
ij a

Txi�aTxj
� �2

Wij

¼
X
i

aTxiDiixT
i a

� ��X
ij

aTxiWijxT
j a

� �

¼ aTX D�Wð ÞXTa¼ aTXLXTa: ð2Þ

where D is a diagonal matrix with Dii ¼
P
j
Wij, and L¼D�W is

the graph Laplacian matrix. Here the bigger Dii is, the more
important yi is. Thus, we empirically set the constraint of yDyT ¼ 1,
which can be expressed as

aTXDXTa¼ 1 ð3Þ

Finally, the minimization problem is reduced to solve the pro-
blem as

argmina aTXLX
Ta

s:t:aTXDXTa¼ 1

ð4Þ

and it can be transformed to a generalized eigenvalue problem as:

XLXTa¼ λXDXTa ð5Þ
where λ is the minimum eigenvalue solution of Eq. (5) and a is

the corresponding eigenvector. We additionally consider con-
ducting LPP in RKHS. Let ϕðXÞ denote the data expression in Hil-
bert space, the eigenvalue problem then can be written as

ϕ Xð ÞLϕ Xð ÞT
h i

v¼ λ ϕ Xð ÞDϕ Xð ÞT
h i

v ð6Þ

Since eigenvectors of Eq. (6) are linear combinations of
ϕ xið Þ; i¼ 1;…;n, there exist coefficients αis; i¼ 1;2;…;n such that

v¼
Xn

i ¼ 1
αiϕ xið Þ ¼ϕ Xð Þα ð7Þ

Let Kij ¼ K xi; xj
� �¼ ϕ xið ÞUϕ xj

� �� �¼ϕ xj
� �Tϕ xið Þ, we can obtain

the solution of Kernel Locality Preserving Projection (KLPP) via the
following eigenvalue problem

KLKα¼ λKDKα ð8Þ
where λ is the minimum eigenvalue solution of Eq. (8) and a is the
corresponding eigenvector. Particularly, if we use normalized
Laplacian L ¼ I�D� 1

2WD� 1
2 instead, Eq. (8) can be written as

KLKα¼ λKKα ð9Þ
LPP and its extended version KLPP have been widely used in

many applications [39–40]. However, they have their own limita-
tions to handle large scale databases.

The main limitation of LPP comes from its graph construction.
KNN graph is a feasible approximation to model the manifold data
and can well capture the local structure of data points. Never-
theless, the computational complexity of this graph construction is
Oðn2Þ, and the storage cost of the adjacency matrix is Oðn2Þ as well.
When the size of dataset becomes larger, it would pose a challenge
to the dimensionality reduction task due to the rapid growth of
the temporal and spatial costs.

The limitation of KLPP mainly comes from the consumption of
its eigenvector computation. It is a significant cost for the large
dataset, because the time complexity of the mapping vectors
computation via Eq. (9) is Oðn3Þ.

3.2. Scalable graph construction

To alleviate this issue, the cost of graph construction is
expected to be linear with the data size in terms of both time
and storage consumption. We therefore construct the Anchor-
graph [12–13] instead of the original KNN graph to meet this
requirement.

Given a dataset X¼ x1; x2;…; xn A RD�n with n samples in D
dimensions, we are supposed to measure the adjacency weight
between these samples to model the distribution of manifold
data. Unlike the KNN strategy, we first adopt a clustering
method to obtain a set of clustering centers as virtual anchors¼
{u1,u2,…um A ℝD�m, i.e., Step 1 in Fig. 1. As these anchors share
the same feature space with the original data points, we can
construct the weighted graph in two steps as follows, i.e., Step
2 in Fig. 1.

First, we compute the local weight matrix, which measures the
relationship between data points and its s closest anchors. A
simple way to measure this underlying relationship is the Nada-
taya–Waston kernel regression [41], which defines such Zik based

Fig. 1. The proposed AgLPP dimensionality reduction process.
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on a kernel function Kσ as

Zik ¼
Kσðxi;ukÞP

k0 A ih iKσðxi;uk
0Þ8kA i

� � ð10Þ

where the notation i
� �

A ½1: m� is the set which saves the indexes of
the s closest anchors of xi.We typically adopt Gaussian kernel
Kσðxi;ukÞ ¼ exp ½�‖xi �uk‖2

2σ2 � for this kernel regression. The
smoothing parameter σ determines the size of the local region in
which the anchor can affect the target point.

Then, we obtain the adjacency weight measurement, which
estimates the relationship between real data points. Based on the
local weight matrix, Liu et al. [12] suggested computing the
adjacency matrix as

W¼ ZΛ�1ZT ð11Þ
where Λ is a diagonal matrix defined as Λkk ¼

P
Zik. We can see

that if two points are correlative (Wij40), they share at least one
common anchor, otherwise Wij¼0.

3.3. LPP on Anchorgraph

After Anchorgraph construction, we introduce how to reduce
the computational cost of original LPP via employing this adja-
cency matrix W. We first approximate each data point xi with x̂ i

by x̂ i ¼UZi
T. Then Eq. (2) can be rewritten as

1
2

X
ij

aTxi�aTxj
� �2

Wij ¼ aTUZTLZUTa ð12Þ

where L¼D�W¼ I�ZΛ�1ZT.
We similarly impose the constraint of yyT ¼ 1, which can be

written as

aTUZTZUTa¼ 1 ð13Þ
The minimization problem then reduces to

argmina aTU ~LUTa

s:t:aTU ~DUTa¼ 1 ð14Þ
where ~D ¼ ZTZ and ~L ¼ ZTZ�ZTZΛ�1ZTZ makes a new Laplacian
matrix with much smaller size. Lastly, the above problem can be
transformed to a generalized eigenvalue problem with minimum
eigenvalue solution, i.e., Step 3 in Fig. (1),

UT ~LU a¼ λUT ~DU a ð15Þ
For each new data point xi, the corresponding mapped point in

lower dimensional representation can be obtained by

yi ¼ aTUZi
T ð16Þ

where Zi is the local weight between xi and anchor set U.
So far, we have built the reduced LPP with Anchorgraph, i.e.,

AgLPP, which is described in Algorithm 1. As a result, AgLPP has a
computational cost of OðTDnmþD3Þ (T is the iteration times in k-
means) and a storage cost of O(nm), while LPP has a computational
cost of O Dn2þD3

� �
and a storage cost of Oðn2Þ. When ncD, AgLPP

clearly needs lower cost than LPP in terms of the implement time
and storage space.

Algorithm 1. Anchorgraph-based Locality Preserving Projection
(AgLPP)
Input: data points xif gni ¼ 1ARD�n, anchor number m, integer s,
low dimensionality d.

1. Implement clustering method to produce m cluster centers as
anchors.

2. Measure the local weight matrix according to Eq. (10).
3. Compute the eigenvalues and eigenvectors of the generalized

eigenvalue problem in Eq. (15).

4. Map the original data points into low dimensional space
according to Eq. (16)
Output: mapped data points yi

� 	n
i ¼ 1ARd�n, anchor set U,

mapping eigenvectors A.

3.4. Kernel AgLPP and its reformulation of sparse representation

Now we consider the kernel version of AgLPP in RKHS. Suppose
ϕðUÞ denotes the anchor matrix in the Hilbert space, then Kernel
AgLPP is given below:

ϕðUÞ ~L\�ϕ Uð ÞTA¼ λϕðUÞ ~Dϕ Uð ÞTA ð17Þ

As the eigenvectors of Eq. (17) are linear combinations of ϕ Uð Þ,
i.e.;A¼ϕðUÞα, we have

ϕ Uð ÞTϕ Uð Þ ~L\�ϕ Uð ÞTϕ Uð Þα¼ λϕ Uð ÞTϕ Uð Þ ~Dϕ Uð ÞTϕ Uð Þα ð18Þ

Let ~K ¼ϕðUÞTϕðUÞARm�m denote the kernel matrix of the
anchors, then Eq. (18) is abbreviated by

~K ~L ~Kα¼ λ ~K ~D ~Kα ð19Þ

where ~L\� and ~D are the same matrixes as those in Eq. (14). For
each new data points, its low dimensional mapped point can be
obtained by

yi ¼ATϕðUÞZi
T ¼αTKZi

T ð20Þ
Clearly, the computational cost of Kernel AgLPP is OðTDnmþm3Þ

and a storage cost is O(nm), while the original Kernel LPP has a
computational cost of O Dn2þn3

� �
and a storage cost of Oðn2Þ.

So far, we have extended the dimensionality reduction into
RKHS. We additionally reformulate it into a novel sparse repre-
sentation in below.

Instead of approximating data point xi by the local weight
matrix Zi with the fixed anchor set U, we redefine each data point
via its anchor based sparse representation as ~x i:¼ Zi

T. Then Eq. (2)
can be rewritten as the following objective function:

aTZTLZa¼ aT ~La ð21Þ

with the constraint of yyT ¼ 1.
It can be transformed into the eigenvalue problem given below:

aT ~La¼ λaT ~Da ð22Þ

By letting a¼ ~Kα, Eq. (22) becomes identical to the eigenvalue
problem of Kernel AgLPP, i.e., Eq. (19). This validates that LPP on
the new redefined data points yields similar results as Kernnel
AgLPP on the data points. Later in our experiments, we named
these two variants as KAgLPP (Kernel version) and SR AgLPP
(Sparse Representation version) respectively.

For clarity, we demonstrate the relationship between the proposed
AgLPP, KAgLPP and SR AgLPP in Fig. 2. Let D be the dimensionality of
raw data feature, and m be the number of anchors. As we can see,
AgLPP reduces the dimensionality of data in raw feature space with
original dimensionality D. In contrast, KAgLPP and SR AgLPP reduce
the dimensionality in an indirect way: for the former, it first maps data
into Hilbert space, and then reduces the dimensionality via kernel
trick to obtain m dimensional mapping vectors; for the later, it first
maps data into the new space spanned by anchors, and then reduces
the dimensionality of the sparse representation. Since the underlying
data expressions of KAgLPP and SR AgLPP are transformed into either
higher but effective or more meaningful feature spaces, their perfor-
mances are expected to be better than AgLPP.
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4. Experiment study

4.1. Experiments setup

In this section, we show several experimental results and
comparisons to evaluate the effectiveness and efficiency of our
methods. The adopted datasets include two small scale datasets
Digit1, and USPS, two middle scale datasets USPS-All and News-
groups, and one large scale dataset MNIST-Train [42,43]. The
details of these datasets are listed in Table 1. We here briefly
describe the five datasets used in our experiments.

For Digit1 and USPS datasets, their instances were both divided
into two different classes, and each of these samples has been pre-
processed into a 241-demensional vector as feature.

The USPS-All dataset contains 11,000 instances which are 8-bit
gray scale images (16�16) of “0” through “9”. The MNIST-Train
dataset consists of 60,000 examples, and contains ten classes of
28�28 pixel digital images (0–9) with approximately 6000
instances in each class. Since the raw hand written image patch is
relative small, we directly use the normalized grayscale value for
each pixel as image features.

The Newsgroups here is a tiny version of the 20 news groups data,
with binary occurance data for 100 words across 16,242 postings. It
has also tagged the postings by the highest level domain in the array
"newsgroups". In our experiments, we validate our methods via a
simple 1NN classification task, which is conducted in the following
steps. First, we construct the Anchorgraph as described in Section 3.2
and then calculate the eigenvectors of the generalized eigenvalue
problem, for e.g., Eq. (15). Second, we project data points into the
subspace based on the obtained mapping eigenvectors. Third, we
randomly label a number of samples and identify other unlabeled
points by the nearest neighbor classifier under the Euclidean metric
for distance measure. Finally, we repeat the third process for several
times and calculate the average classification accuracies. Except the
baseline which employs the original data feature in the nearest
neighborhood classification tasks, the following five linear methods,
i.e., PCA [7], NPE [19], LPP [11], OLPP [44], AgLPP, are compared,
which are conducted in the original data space. We also compare

four methods, i.e., KPCA [23], KLPP [11], KAgLPP, SR AgLPP, which are
conducted in the new transformed feature space.

It is noted that both the radius and the kernel bandwidth σ in
the above algorithms are turned to the optimal one from σ0 �
2�3;2�2;2�1;1;21;22;23 where σ0 is the averaged distance
between the points in the dataset. Since the number of anchors
plays an important role in the quality of Anchorgraph construction
[14], we set it to empirical values in different scale of experiments.
As there is no explicit way to determine the optimal value for the
target dimensionality d, we therefore test it in a wide range for all
methods. Our experiments are implemented in MATLAB2013a on a
computer with 2.6 GHz CPU, 32 GB RAM.

4.2. Performances

4.2.1. Performances on small datasets
To evaluate the effectiveness of our proposed AgLPP, we first con-

duct experiments on small datasets, where the anchor number is set to
500. Via selecting labeled samples for 10 repeated times, the average
classification accuracies versus different number of target dimension-
ality of the methods conducted in original space are displayed in Fig. 3,
and the accuracies in the new feature space are shown in Fig. 4.

From the results, we have the following observations. First, com-
pared with the baseline method, we can see that all these methods
improve their accuracies by representing data in lower dimensionality
in most cases. This validates that although the feature of the original
data is high dimensional, its underlying structure and discriminative
information can be characterized and retained in a subspace with
much lower dimensionality. Second, our AgLPP outperforms other
methods consistently in the original feature space, which attributes to
the effective approximation of the data point via the anchor based
representation. Third, KAgLPP and SR AgLPP have similar perfor-
mances as we expected, and they are generally better than AgLPP.
Fourth, as the eigenvectors are the linear combination of the trans-
formed data expression, i.e., v¼ϕ Xð Þα for KLPP, A¼ϕðUÞα for
KAgLPP, and ϕ Xð Þ is clearly denser thanϕðUÞ, the projecting perfor-
mance of the former can be comparable or better than the latter.

4.2.2. Performance on middle datasets
In this experiment, we validate our method on two medium sized

datasets, i.e. Newsgroups and USPS-All, where the anchor number is
empirically set to 1000. To obtain the anchors, we particularly employ
a two-layer hierarchical k-means, such as [21], to accelerate the clus-
tering process, where the max numbers of the clusters are empirically
set as 50 and 20. Via selecting labeled samples for 10 repeated times,
the average classification accuracies versus different target dimen-
sionality of the method conducted in original space and those in the
new feature space are shown in Figs. 5 and 6. In our consideration, the
issue of performance should include both efficiency and effectiveness.
We therefore report the computational times of the reduced dimen-
sionality with the best classification accuracies in Tables 2 and 3. Note
for our methods, the total temporal cost consists of two parts,
including the temporal cost for k-means based anchors selection and
the remaining for real dimensionality reduction process. We list them
separately in the tables as timek�meansþtimerest.

Similar with the results on small datasets, we can see that compared
with the baseline method, the dimensionality reduction methods gen-
erally improve the classification precisionswith lower dimensionality and
our AgLPP outperforms other methods in the entire scope in the original
feature space. And KAgLPP and SR AgLPP have similar performances as
we expected, and they are generally better than AgLPP. In addition, as we
can see in Fig. 5(b), features with larger dimensionality do not necessarily
bring better classification results but probably introduce unnecessary
noise in certain applications, because the redundant features will make
the large deviation to the similarity measure.

Fig.2. An illustration of the relationship between our methods.

Table 1
Details of the five datasets used in the experiments

Datasets Sample size Dimension # of classes # of labeled instances

Digits1 1500 241 2 100
USPS 1500 241 2 100
Newsgroups 16,242 100 4 100
USPS-All 11,000 256 10 100
MNIST-Train 60,000 784 10 100
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Besides the accuracies, we also pay attention to the temporal
costs for implementing dimensionality reduction. From Tables 2
and 3, we find that PCA has the least time and NPE has the largest

time, because PCA only needs to calculate the covariance matrix
without graph construction while NPE needs to solve a mini-
mization problem for weight estimation. We additionally see that,

Fig. 3. Recognition rate versus dimensionality reduction on small databases in the original feature space. (a) Digit1 database and (b) USPS database.

Fig. 4. Recognition rate versus dimensionality reduction on small databases in the new feature space. (a) Digit1 database and (b) USPS database.

Fig.5. Recognition rate versus dimensionality reduction on middle databases in the original feature space. (a) USPS-All database and (b) Newsgroup database.
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via the hierarchical strategy of k-means, our methods need much
less implementing time compared with the other manifold based
learning methods, especially in the new transformed feature
space. Therefore, although the performance of KLPP is comparable
or better than KAgLPP, our method still highlights itself in largely
reducing the computational cost, with an acceptable sacrifice of
accuracy. We note that despite the adopted simple clustering
strategy may bring the accuracy loss to our methods, we still

obtain comparable or better performances than others. As an
alternative, some other clustering methods can be considered to
improve the performance, such as random forest clustering [45].

4.2.3. Performance on a large dataset
Now we conduct experiments on the large-scale MNIST-Train

dataset. The required time for KLPP increases very fast and for this
dataset, its procedures are out of memory due to the operation of

Fig. 6. Recognition rate versus dimensionality reduction on middle databases in the new feature space. (a) USPS-All database and (b) Newsgroup database.

Table 2
Implementation time (s) for dimensionality reduction in the original feature space

Method PCA NPE LPP OLPP AgLPP

USPS-All 0.14 10.13 5.68 6.625 3.88þ0.81
Newsgroup 0.04 25.84 11.08 10.92 2.90þ0.85

Table 3
Implementation time (s) for dimensionality reduction in the new feature space

Method KPCA KLPP KAgLPP SR AgLPP

USPS-All 18.41 159.62 3.88þ4.20 3.88þ2.21
Newsgroup 34.29 496.87 2.90þ3.29 2.90þ1.91

Fig.7. Recognition rate versus dimensionality reduction on MNIST-Train database. (a) In the original feature space and (b) in the new feature space.
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computing KLK in Eq. (8). Like [14], we do not report the result of
KLPP here. We empirically set the anchor number to 2000, and
also employ a k-means clustering method in two layers to accel-
erate our methods, where the max number of the cluster is set to
50 and 40 respectively. Via selecting labeled samples for 10
repeated times, the average accuracies for increase dimensionality
of the method conducted in original space are displayed in Fig. 7
(a), and those in the new feature space are shown in Fig. 7
(b) respectively. And the computational costs with the best clas-
sification accuracies are recorded in Tables 4 and 5.

As can be seen, our AgLPP algorithm outperforms the other
methods in the original feature space, which again validates the
effectiveness of the approximation of the data point via the anchor
based representation. And we can also observe that KAgLPP and SR
AgLPP have very similar performances, and they are both superior to
KPCA. We additionally compare the temporal costs for the involved
methods. In both Tables 4 and 5, we observe that our methods have
the best performances among all the manifold based methods in
terms of the implementing time. In general, our methods demonstrate
better effectiveness and efficiency than other closely related methods.

4.3. Performance on varying the parameter σ

Finally, we test the sensitivity of the parameter σ, which is used in
the proposed algorithms including AgLPP, KAgLPP, and SR AgLPP. For
convenience, we implement experiment on the USPS-All and MNIST-
Train datasets and simply set anchor number m and reduced dimen-
sionality d to proper values, e.g., m¼ 1000; d¼ 20 for the former and
m¼ 2000; d¼ 20 for the latter. We vary σ from σ0 � 2�3;2�2;2�1;

1;21;22;23 where σ0 is the averaged distance between two points in

the data set. Fig. 8 demonstrates the performance curve with respect to
the variation of σ. From the figure, we observe that the performance of
AgLPP is robust to this parameter, and the performances of other two
versions stay at a stable level when the parameter becomes large.

5. Conclusions

In this paper, we propose AgLPP by addressing the challenges of
the traditional dimensionality reduction methods in terms of com-
putational complexity and storage cost. In addition, we extend AgLPP
into two novel variants which are implemented in the new trans-
formed feature space. As both the time and storage costs of the
AgLPP grow linearly with the data size, this method is potentially
useful in dealing with much larger datasets. Furthermore, our strat-
egy that employs the Anchorgraph construction for describing the
pairwise relationship between data points is universal and can be
easily leveraged in many retrieval and classification tasks [46–50].
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Mean implementation time (s) for dimensionality reduction in the original feature space
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Implementation time (s) for dimensionality reduction in the new feature space
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MNIST-Train 1820.52 62.18þ23.47 62.18þ19.96

Fig. 8. Average performance curves of our methods with respect to the variation of σ. Results on the (a) USPS-All and (b) MNIST-Train.
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ABSTRACT
Recent research has shown Deep Neural Networks (DNNs) to be
vulnerable to adversarial examples that induce desired misclassifi-
cations in the models. Such risks impede the application of machine
learning in security-sensitive domains. Several defense methods
have been proposed against adversarial attacks to detect adversarial
examples at test time or to make machine learning models more
robust. However, while existing methods are quite effective under
blackbox threat model, where the attacker is not aware of the de-
fense, they are relatively ineffective under whitebox threat model,
where the attacker has full knowledge of the defense.

In this paper, we propose ExAD, a framework to detect adver-
sarial examples using an ensemble of explanation techniques. Each
explanation technique in ExAD produces an explanation map iden-
tifying the relevance of input variables for the model’s classifica-
tion. For every class in a dataset, the system includes a detector
network, corresponding to each explanation technique, which is
trained to distinguish between normal and abnormal explanation
maps. At test time, if the explanation map of an input is detected
as abnormal by any detector model of the classified class, then we
consider the input to be an adversarial example. We evaluate our
approach using six state-of-the-art adversarial attacks on three im-
age datasets. Our extensive evaluation shows that our mechanism
can effectively detect these attacks under blackbox threat model
with limited false-positives. Furthermore, we find that our approach
achieves promising results in limiting the success rate of whitebox
attacks.

1 INTRODUCTION
In recent years, Deep Neural Networks (DNNs) are being increas-
ingly adopted in a wide range of tasks such as face-recognition
[25], natural language processing [19], and malware classifica-
tion [9]. This trend can be attributed to the superior performance
achieved by DNNs in solving computational tasks that rely on
high-dimensional data. However, increasing adoption of DNNs to
security-critical applications, such as self-driving cars and malware
classification, is hindered by the vulnerability of DNNs to adversar-
ial attacks [15, 31, 39, 47]. Specifically, minor yet carefully computed
perturbations to natural inputs can cause DNNs to misclassify.

Figure 1: Intuition behind the proposed ExAD framework.

Several methods have been proposed for defending against ad-
versarial examples. One direction of research is to improve the
robustness of neural networks, such as through adversarial train-
ing [15] or gradient masking [17]. However, subsequent works
have shown that neural network architectures modified with such
techniques can still be attacked [7]. Another research direction is
adversarial detection, where the goal is to detect if an input is an
adversarial example or a normal example. Early works in this area
either used a second neural network [14, 16, 36], or statistical tests
[3, 18, 28] to classify between normal and adversarial examples.
However, Carlini et al. [6] showed that while most of these mecha-
nisms are successful against blackbox attacks, they lack robustness
to whitebox attacks, where the adversary has knowledge of the
defense. Although many recent methods have enhanced the de-
tection of blackbox adversarial attacks [33–35, 50], improving the
robustness to whitebox attacks remains an open problem.

One way of uncovering the reasons for the resulting misclassi-
fication of an adversarial example can be understanding why the
model predicts what it predicts through explanation techniques
[1, 2, 23, 37, 41, 42, 44, 46]. For an image input, the result from an
explanation technique encodes the relevance of each pixel for the
prediction result and is commonly referred to as an explanation map.
Our hypothesis is that the explanation map of an adversarial ex-
ample being misclassified as the target class may not be consistent
with explanation maps generated for correctly classified normal
examples of that class. We term the former type as abnormal ex-
planations and the latter as normal explanations throughout this
paper. Figure 1 shows an intuitive example where we can observe



that the explanation map of an adversarial example classified into
the shirt class (bottom-right) is quite distinguishable from that of
a normal example of the targeted class (bottom-left). Overall, the
distinguishability between normal and abnormal explanation maps
guides us in exploring the effectiveness of using explainability as a
tool for detecting adversarial examples.

However, a defense method that relies on a single explanation
technique may still not be robust under whitebox setting. An adap-
tive adversary can leverage recent findings which show that expla-
nations can be unreliable [22] and can be manipulated to produce
a target explanation map [10, 52]. Such an adaptive adversary can
generate adversarial examples that not only fool the target model
into producing desired misclassifications, but also fool the targeted
explanation technique into producing normal explanation maps.
Towards building a mitigation strategy, we take motivation from
previous work on N-variant systems [8]. To provide higher resis-
tance against attacks on software vulnerabilities, these systems
combine multiple variants with disjoint exploitation sets into a sin-
gle system. In context of our work, we propose to use an ensemble
of multiple kinds of explanation techniques. The benefit of this
approach is that it requires an adaptive adversary to construct an
adversarial example that fools the target model and simultaneously
fools all explanation techniques. By incorporating diverse explana-
tion techniques, we can reduce the probability that an attacker will
achieve this goal.

In this work, using the above insights, we propose ExAD, an
Ensemble approach for Explanation-based Adversarial Detection.
ExAD uses an ensemble of explanation techniques wherein each
technique provides an explanation map for every classification
decision by a target model. To introduce explanation diversity, we
include both gradient-based [2, 41–43, 46] and propagation-based [1,
37, 41] explanation techniques in ExAD. Furthermore, for any class
in a dataset, the system includes a detector model associated with
each explanation technique. The detector model determines if an
explanation map produced by the respective explanation technique
is normal or not for that class. The key idea here is to use the
distinguishability between normal and abnormal explanations for
any class. Finally, for a test input classified into a particular class,
if the explanation map produced by any technique is detected as
abnormal by the corresponding detector model, then we classify
the input as an adversarial example.

We evaluate ExAD using six state-of-the-art adversarial attacks
on three image datasets, namely MNIST [27], Fashion-MNIST (FM-
NIST) [49] and CIFAR-10 [24].We first perform the evaluation under
the blackbox threat model. Our experimental results show that we
can effectively detect all attacks, achieving a detection rate above
98% (many having 100% detection rate) across the three datasets
with a low false-positive rate of under 1.1%.

More importantly, we further evaluate ExAD under whitebox
threat model. We build on previous research [10, 52], and create a
strong adaptive adversary to generate adversarial examples that
fool the target model as well as a target explanation technique.
Through experimental results, we make an interesting finding on
the transferability of adaptive attacks on explanation-based de-
tector models. We observe that on targeting a propagation-based
technique, the resulting adversarial examples are more successful
in fooling detector models of other propagation-based techniques

(into misclassifying an explanation map as normal) as compared to
fooling detector models of gradient-based techniques. Likewise, we
find that targeting a gradient-based technique transfers better to the
detector model of the other gradient-based technique compared to
those of propagation-based techniques. Using an ensemble of detec-
tor models corresponding to diverse techniques, ExAD achieves a
mean detection rate of over 88% for this whitebox attack across the
three datasets. The results indicate that our proposed defense can
significantly limit the success rate of such whitebox attacks. Addi-
tionally, we find that our ensemble approach makes it considerably
harder for attackers to perform more advanced whitebox attacks,
such as simultaneously targeting all explanation techniques.

We summarize our main contributions as follows.
• We develop a novel framework called ExAD to detect adver-
sarial examples. ExAD uses an ensemble of diverse explana-
tion techniques to improve the robustness against whitebox
attacks.

• We evaluate ExAD on six state-of-the-art adversarial at-
tacks and three image datasets under blackbox threat model.
The results show that the proposed system can consistently
achieve high detection rates with a low false-positive rate.

• We extensively evaluate ExAD under whitebox threat model
by creating a strong adaptive adversary which targets the
classification model as well as an explanation technique.
Our findings show that ExAD achieves promising results in
limiting the success rate of whitebox attacks.

The rest of the paper is organized as follows. In Section 2, we
review background and related work. In Section 3, we introduce
our proposed framework in light of two applicable threat models.
Subsequently, we report experimental results and comparison with
state-of-the-art detection methods in Section 4. Then, we discuss
aspects such as the fragility of explanations and limitations of our
work in Section 5. Finally, we conclude the paper in Section 6.

2 BACKGROUND AND RELATEDWORK
2.1 Neural networks
A DNN is a computational graph of elementary computing units,
called neurons, organized into layers that represent the extraction
of successive representations from the input. We use notations
consistent with previous work [6, 33] to denote an𝑚-class DNN as
a function 𝑓 : R𝑑 → R𝑚 . The i-th layer of the network computes

𝑓 𝑖 (𝑥) = 𝑅𝑒𝐿𝑈 (𝑊 𝑖 𝑓 𝑖−1 (𝑥) + 𝑏𝑖 )

where𝑊 𝑖 is a weight matrix, 𝑏𝑖 is a vector of bias values, and ReLU
is a non-linear activation function. Let 𝑍 (𝑥) denote a vector of𝑚
elements representing the output of the last layer (before softmax),
known as logits, i.e., 𝑍 (𝑥) = 𝑓 𝑛 (𝑥). A softmax function is used to
obtain the normalized output of the network given by 𝑦 = 𝑓 (𝑥) =
softmax(𝑍 (𝑥)) where 𝑥 ∈ R𝑑 and 𝑦 ∈ R𝑚 with 𝑦𝑖 representing
the probability of the input being recognized as class 𝑖 . Then, we
represent the classification of 𝑓 (·) on 𝑥 by 𝐶 (𝑥) = argmax𝑖 (𝑓 (𝑥)𝑖 ).
At test-time, a trained model is provided with test inputs 𝑋𝑡 , and
for each input 𝑥𝑡 ∈ 𝑋𝑡 , the model assigns its classification to be
𝐶 (𝑥𝑡 ) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 (𝑓 (𝑥𝑡 )𝑖 ). The classification is considered correct
if 𝐶 (𝑥𝑡 ) is same as the true label 𝐶∗ (𝑥𝑡 ).
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2.2 Adversarial examples
Adversarial examples are crafted by imperceptibly perturbing nor-
mal inputs to cause DNNs into misclassifying them. Formally, an
input to the classifier 𝑓 (·) is termed as normal if it occurs naturally
[35] or was benignly created [6]. Then, given a normal input 𝑥 ∈ R𝑑
with correctly classified class 𝐶 (𝑥) = 𝑐 , we call 𝑥 ′ an (untargeted)
adversarial example if it is close to 𝑥 , i.e.,Δ(𝑥, 𝑥 ′) < 𝜖 and𝐶 (𝑥 ′) ≠ 𝑐 ,
where Δ(.) denotes a measure of similarity between two inputs
and 𝜖 is a threshold that limits the permissible perturbations in the
adversarial example. In a more restrictive case, an attacker could
also target a desired class 𝑡 ≠ 𝑐 and find a 𝑥 ′ close to 𝑥 such that
𝐶 (𝑥) = 𝑐 and 𝐶 (𝑥 ′) = 𝑡 . We call 𝑥 ′ a targeted adversarial example.

In the case of images, the closeness function Δ(.) and threshold
𝜖 should be chosen such that the adversarial example and its seed
image (normal counterpart) are indistinguishable to a human eye.
To define Δ(.), a popular distance metric is the 𝐿𝑝 norm, defined

as ∥𝑑 ∥𝑝 =

( ∑𝑛
𝑖=0 |𝑣𝑖 |𝑝

) 1
𝑝 . Common choices for 𝐿𝑝 include: 𝐿0, a

measure of the number of pixels which have different values in
corresponding positions in two images; 𝐿2, which measures the
standard Euclidean distance; or 𝐿∞, a measure of the maximum
change among all pixels at corresponding places in two images.

2.3 Existing attacks
Researchers have developed a number of methods for constructing
adversarial examples. Broadly, these methods can be categorized
into gradient-based attacks [7, 15, 47], which leverage gradient-
based optimizations, and content-based attacks [4, 12], where per-
turbations are made in accordance with the semantics of the input
content to simulate real-world scenarios. In this paper, we focus on
six state-of-the-art gradient-based attacks for neural network clas-
sifiers, namely Jacobian-based Saliency Map Attack (JSMA) [39],
Basic Iterative Method (BIM) [26], Momentum Iterative Method
(MIM) [11], and Carlini and Wagner Attacks (CW) [7] tailored to
𝐿0, 𝐿2, and 𝐿∞ norms. For more details, we refer interested readers
to the original papers and to recent works on adversarial detection
[33, 35] which provide a good summary of these attacks.

2.4 Existing work on adversarial detection
Adversarial detection is a defense approachwith the goal of building
a classifier 𝑔 with a binary output 𝑦 ∈ {0, 1}, where labels 0 and 1
denote that the input instance is normal or adversarial, respectively.
We briefly review state-of-the-art works in detecting adversarial
examples, and divide them into three categories as below.

Training a Detector. First, we can use adversarial examples
to train detectors. The input into detectors can be chosen as data
instances in raw feature space or the intermediate representation
space of the target model. Using the former strategy, Gong et al.
show that a simple binary classifier can learn to separate normal
and adversarial instances [14]. In a related work, Grosse et al. add
a new class, solely for adversarial examples, in the output layer
of the model [16]. But, modifying the model architecture impacts
the accuracy on normal examples. Based on the latter approach,
Metzen et al. use representations generated by inner deep neural
network layers as inputs into detectors which are augmented to the

classification network [36]. By freezing the weights of the classifi-
cation network before training the detectors, this method does not
affect the classification accuracy on normal examples. However, in
subsequent work, Carlini et al. showed that these detectors don’t
generalize well and lack robustness to whitebox attacks [6]. In our
work, we mitigate the generalization challenge by including an
attack-independent defense setting (discussed in Section 3.4.2).

Statistical Metrics. Second, we can use statistical metrics to
design detectors. Grosse et al. [16] study two statistical distancemea-
sures, Maximum-Mean-Discrepancy and Energy Distance, where
a sample is regarded as adversarial if it is rejected by statistical
testing. Ma et al. estimate an LID value which assesses the space-
filling capability of the region around an example by measuring the
distance distribution with respect to its neighbors [34]. The authors
demonstrate that estimated LID of adversarial examples tends to
be much higher than that of normal examples. However, a chal-
lenge faced by these approaches is in developing more effective and
transferable metrics to separate clean instances from adversarial
examples generated by different attacks.

PredictionAbnormality. Third, we can also resort to detecting
the abnormality of input instances. Meng and Chen proposed Mag-
net [35] which learns to approximate the manifold of normal exam-
ples using autoencoders. Another method called Feature Squeezing
[50] proposes reducing the degree of freedom of an adversary, such
as by smoothing images or minimizing their color depth. Another
recent work called Neural-network Invariant Checking (NIC) pro-
posed leveraging the provenance channel and the activation value
distribution channel in DNNs by showing that adversarial examples
tend to violate either provenance invariant or value invariant [33].
However, while these methods have improved the detection rates
on blackbox attacks, they have shown very limited success against
whitebox attacks. Zhang et al. proposed a detection method based
on perturbation of saliency maps [51]. The authors find that on
adding adversarial perturbations, the saliency of the adversarial
example is also perturbed compared to that of the seed image. How-
ever, this difference between saliency may not be effective because,
at test-time, we do not know the class from which an adversarial
example originated. Therefore, we do not know what its normal
saliency would look like had the example not been perturbed. Be-
sides, explanations have also been used by Liu et al. for a different
goal of crafting adversarial examples [30]. In this paper, we further
explore the premise of using explanations, but to detect adversarial
examples and based on a fundamentally different approach. Our
work was done concurrently with a similar approach presented by
Wang et al. [48]. In contrast, we have the following differentiating
aspects. First, our work offers a more detailed evaluation on white-
box attacks. Second, we provide a discussion on the fragility of
an explanations-based defense. Finally, we compare the proposed
method with a number of state-of-the-art detection systems.

2.5 Explainable machine learning
Our work utilizes recent advances in explainable machine learn-
ing. Specifically, we focus on local explainability methods [2, 29]
which explain the output of DNN models for a given input. For
computer vision models, these techniques identify which regions
in an input image are most responsible for the prediction result.
The explanation result is often termed as a saliency map [42], or
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more generally, an explanation map [10]. Naturally, our defense is
compatible with models that are inherently explainable (e.g., linear
models) and models that produce an explanation result along with
the prediction [32, 40]. However, we focus on local explainability
methods as they build on top of existing models. This allows us to
add our adversarial detection capability to any existing blackbox
model without sacrificing its prediction power for explainability, or
putting the burden of producing explanations during classification.

Among local explanation techniques, backpropagation-based
methods have gained considerable attention. These can be further
categorized into the following. The first is gradient-based tech-
niques which rely on the gradient of the neural network function
to generate explanations [2, 41–43, 46]. The second category is
propagation-based techniques [1, 37, 41]. These techniques view the
neural network as a computational graph, and generate explana-
tions by starting with the prediction score at the output layer and
progressively redistributing it backwards by means of propagation
rules until the input layer is reached. To achieve diversity in expla-
nation methods, we use both gradient-based and propagation-based
explanation techniques, which we discuss further in Section 3.3.

3 DESIGN
3.1 Threat model
In designing our defense, we assume that the attacker has complete
knowledge of the target classifier 𝑓 (·) including its architecture and
parameters. This is a conservative and practical assumption, consis-
tent with prior works [33, 35, 50]. Also, depending upon whether
the attacker has knowledge of the defense, we consider two types
of threat models. First, we consider blackbox attack, where the at-
tacker does not have any knowledge of the defense mechanism.
Second, we consider whitebox attack, where the attacker has com-
plete knowledge of the defense mechanism including its structure
and parameters. For ExAD, this implies that the attacker has full
knowledge of the explanation techniques and detector models.

3.2 Overview of ExAD
ExAD is a framework that uses an ensemble of explanation tech-
niques to detect adversarial examples. The role of explanation tech-
niques is to allow ExAD to examine the reasons for the misclassifi-
cation of adversarial examples. Our hypothesis is that the explana-
tions of adversarial examples being misclassified as the target class
(abnormal explanations) may not be consistent with explanations
generated for correct classifications of normal examples of that
class (normal explanations). Our design relies upon the consistency
of normal explanations, and their distinguishability from abnormal
explanations. We provide an intuitive example for the distinguisha-
bility aspect in Figure 1. Further examples showing the consistency
aspect can be found in Figure 5 in Appendix A. While we provide
such motivating examples, it is worth noting that an explanation it-
self may be incomprehensible to humans as recent work has shown
neural networks to use non-robust features (that may not align
with human perception of a class) to make predictions [20]. There-
fore, even the distinguishability may not necessarily be apparent to
humans. Nevertheless, we empirically show that we can train de-
tector models to learn to distinguish between normal and abnormal
explanations.

Figure 2: Distinguishability between normal and abnormal
explanations using different explanation techniques.

An overview of our approach is as follows. First, we train the
target model as usual on the clean training set. Second, we use a
set of diverse explanation techniques to generate explanation maps
for normal examples of each class. Third, for every class, we train
a detector model corresponding to each technique. The detector
model identifies if the explanation map of an example is normal for
the classified class. We study two approaches to build the detector
model: a binary classifier approach (where we use both normal
and abnormal explanations) and an anomaly detection approach
(where we only use normal explanations). Whereas the former
setting makes the training and validation process simple (once we
have the required data), the motivation for the latter setting is to
make our defense attack-independent so that it is more likely to
generalize to unknown attacks. At test time, if the explanation map
of an input is classified as abnormal by any detector model of the
classified class, then we consider it to be an adversarial example.

3.3 Generation of explanations
Given a neural network classifier 𝑓 (·) and an input 𝑥 , the explana-
tion of the classification of 𝑥 is represented as an explanation map
denoted by ℎ : R𝑑 → R𝑑 . The explanation map ℎ(𝑥) encodes the
relevance score of every pixel in 𝑥 for the neural network’s predic-
tion. We consider the following explanation generation techniques
towards building an ensemble of methods.

• Gradient: The gradient of the output 𝑓 (𝑥) with respect to
the input 𝑥 is indicative of how infinitesimal changes in each
pixel can influence the output [2, 42]. The explanation map
using the gradient method is given by

ℎ(𝑥) = 𝜕𝑓

𝜕𝑥
(𝑥)

• Gradient ∗ Input (GTI): This method computes an element-
wise product between the gradient-based explanation map of
Simonyan et al. [42] and the input to quantify the influence
of each pixel on the prediction score [41]. Formally, the
explanation map produced by gradient ∗ input is given by

ℎ(𝑥) = 𝑥 ⊙ 𝜕𝑓

𝜕𝑥
(𝑥)
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• Integrated Gradients (IG): In contrast to GTI, which per-
forms a single computation of the gradient at the input 𝑥 ,
integrated gradients computes the gradients at all points
along a linear path from a baseline 𝑥 to 𝑥 , and averages
them [46]. The baseline 𝑥 can be defined by the user and is
generally chosen as a black image. Formally,

ℎ(𝑥) = (𝑥 − 𝑥) ⊙
∫ 1

𝛼=0

𝜕𝑓 (𝑥 + 𝛼 (𝑥 − 𝑥))
𝜕𝑥

d𝛼

• Guided Backpropagation (GBP): This method is an exten-
sion of gradient-based explanation with the key difference
that it prevents backward flow of negative gradients through
non-linearities, such as ReLUs [44].

• Layer-wiseRelevance propagation (LRP): To explain the
prediction of class 𝑐 , LRP [1, 37] starts with the output neu-
ron of class 𝑐 and goes backwards through the network by
following the 𝑧+ rule for all layers except the first.

𝑅𝑙𝑖 =
∑
𝑗

𝑥𝑙
𝑖
(𝑊 𝑙 )+

𝑗𝑖∑
𝑖 𝑥

𝑙
𝑖
(𝑊 𝑙 )+

𝑗𝑖

𝑅𝑙+1
𝑗

Here, 𝑖 and 𝑗 are two neurons of consecutive layers, 𝑅𝑙
𝑖
de-

notes the relevance of 𝑖-th neuron in the 𝑙-th layer, 𝑥𝑙
𝑖
repre-

sents the activation vector, and (𝑊 𝑙 )+
𝑗𝑖
denotes the positive

weight between the two neurons. Then, to account for the
bounded range of an input, we use the 𝑧B rule in the first
layer

𝑅0
𝑖 =

∑
𝑗

𝑥0
𝑗
𝑊 0

𝑗𝑖
− 𝑙 𝑗 (𝑊 0)+

𝑗𝑖
− ℎ 𝑗 (𝑊 0)−

𝑗𝑖∑
𝑖 (𝑥0

𝑗
𝑊 0

𝑗𝑖
− 𝑙 𝑗 (𝑊 0)+

𝑗𝑖
− ℎ 𝑗 (𝑊 0)−

𝑗𝑖
)
𝑅1
𝑗

where 𝑙 andℎ are the lowest and highest allowed pixel values,
respectively.

• Pattern Attribution (PA): Kindermans et al. [23] proposed
patter attribution as an improvement over the LRP frame-
work. The method is analogous to the backpropagation op-
eration with the weights in the backward pass replaced by
element-wise multiplication of weights𝑊 𝑙 and learned pat-
terns 𝐴𝑙 .

While we considered all six of the above-mentioned explana-
tion techniques to include in ExAD, we found the performance of
the gradient method (ℎ(𝑥) = 𝜕𝑓

𝜕𝑥 (𝑥)) to be unacceptable based on
evaluations on the validation sets, whereas remaining techniques
performed significantly better. Therefore, in this work, ExAD uses
an ensemble of 𝑘 = 5 techniques- LRP, GBP, IG, PA, and GTI.

Figure 2 shows examples of normal and abnormal explanations
produced by different techniques used in ExAD. When a test input
𝑥𝑡 is classified by the target model 𝑓 (·) as class 𝑐 , each of the 𝑘
techniques produce an explanation map for this classification. In
column 1, the first, third, and fifth rows show a normal example
from FMNIST, CIFAR-10, and MNIST datasets, respectively. In the
same column, the second, fourth, and sixth rows show an adver-
sarial example which is misclassified as the class represented by
the normal example in the preceding row. Columns 2-6 show the
corresponding explanation maps produced by the five explanation
techniques. The distinguishability between explanation maps of
normal and adversarial examples allows the detector models to

Figure 3: Illustration of the proposed ExAD framework

determine if an explanation map is normal or not. In the following
section, we discuss how a set of 𝑘 detector models, one correspond-
ing to every explanation technique, evaluate the explanation maps
towards determining if 𝑥𝑡 is an adversarial example.

3.4 Detector models
The detector model determines if the explanation map of an input is
normal or abnormal for the classified class. We study the following
two methods for building detector models.

3.4.1 Detection using a CNN-based binary classifier. First, we con-
sider an approach of building a CNN-based binary classifier. We
term this as the CNN-based detector model and denote it as 𝑔(·).
Under this setting, we refer to the defense as ExAD-CNN. Below,
we describe the training procedure for these detector models.

For every class 𝑐 , we build a separate detector model 𝑔𝑐,𝑗 (·) for
each explanation technique ℎ 𝑗 . At test-time, for an input classified
as class 𝑐 , the detector model 𝑔𝑐,𝑗 (·) takes the explanation map of
the input, produced by the corresponding explanation technique ℎ 𝑗 ,
and classifies it as normal or abnormal. We build this new model
𝑔𝑐,𝑗 (·) as follows. We take every normal example 𝑥normal from class
𝑐 , which is correctly classified by the target model 𝑓 (·), and generate
the explanation map ℎ 𝑗 (𝑥normal) for its classification into that class.
These explanation maps are considered as normal explanations,
and are labeled as negative class 0. Then, we generate a number of
adversarial examples using different adversarial attacks where the
targeted class is 𝑐 . Next, for each successful adversarial example
𝑥adv, we generate the explanation mapℎ 𝑗 (𝑥adv) for its classification
as target class 𝑐 . These explanationmaps are considered as abnormal
explanations, and labeled as positive class 1. Then, we train 𝑔𝑐,𝑗 (·)
on this labeled training set using a CNN-based architecture.

3.4.2 Detection based on reconstruction error. In this approach, we
avoid the requirement of adversarial examples to train a detector
model, and thereby make the defense more likely to generalize
on unknown attacks. Here, we propose using reconstruction error
by an autoencoder to determine if the explanation map of a test
example is normal or not. We term this as the autoencoder-based
detector model. Under this setting, we refer to the defense as ExAD-
AE. Similar to ExAD-CNN setting, we consider each class and build
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𝑘 autoencoder-based detector models, one corresponding to every
explanation technique.

An autoencoder 𝑎𝑒 =𝜓 ◦𝜙 contains two components, an encoder
and a decoder, which can be defined as transitions 𝜙 : R𝑑 → R𝑧
and𝜓 : R𝑧 → R𝑑 , respectively, where R𝑑 is the input space and R𝑧
is the latent space. For class 𝑐 and the 𝑗-th explanation technique,
the input space for the autoencoder 𝑎𝑒𝑐,𝑗 in our system is formed
by the set of explanations produced by ℎ 𝑗 for correctly classified
normal examples of class 𝑐 . We train the autoencoder to minimize a
loss function over this set of explanations, where the loss function
is taken as the mean squared error (MSE):

𝐿(Etrain) =
1
Etrain

∑
ℎ 𝑗 (𝑥) ∈Etrain

∥ℎ 𝑗 (𝑥) − (𝜓 ◦ 𝜙)ℎ 𝑗 (𝑥)∥2

For a test image, the explanation map ℎ 𝑗 (𝑥) produced by the 𝑗-th
technique is given as input to the autoencoder 𝑎𝑒𝑐,𝑗 which generates
a reconstructed image. Then, we compute a reconstruction error:

𝑅(ℎ 𝑗 (𝑥)) = ∥ℎ 𝑗 (𝑥) − (𝜓 ◦ 𝜙)ℎ 𝑗 (𝑥)∥𝑝 (1)

where ∥ · ∥𝑝 is a suitable 𝑝-norm. If the reconstruction error is above
a threshold 𝑡re, we consider the explanation map ℎ 𝑗 (𝑥) to be ab-
normal. The threshold value is a hyperparameter for each detector
model. It should be low enough to detect abnormal explanations,
but sufficiently high to not falsely flag normal explanations. We de-
cide 𝑡re values using a validation set of normal explanations, which
are in turn derived from a validation set of normal examples. For
any detector, we select the highest 𝑡re such that its false-positive
rate on the validation set is below a threshold 𝑡fp. The threshold 𝑡fp
can be chosen depending upon system requirements.

3.5 Test-time detection of adversarial examples
Figure 3 illustrates our overall approach, with the ExAD-CNN set-
ting. At test-time, if an unknown input 𝑥 is being classified by the
target classifier 𝑓 (·) as class 𝑐 , our goal is to identify if 𝑥 is a nor-
mal example of class 𝑐 or an adversarial example. To this end, we
take the following steps. First, we generate 𝑘 explanation maps
for the classifier’s decision to classify 𝑥 as class 𝑐 using 𝑘 explana-
tion techniques. Second, for each explanation map ℎ 𝑗 (𝑥), we use
the corresponding detector model to determine if the explanation
map is normal or abnormal. For ExAD-CNN, each detector model
directly provides a classification of normal (𝑔𝑐,𝑗 (ℎ 𝑗 (𝑥))=0) or abnor-
mal (𝑔𝑐,𝑗 (ℎ 𝑗 (𝑥))=1). On the other hand, for ExAD-AE, we obtain
the reconstruction error for each explanation map ℎ 𝑗 (𝑥) using the
corresponding autoencoder 𝑎𝑒𝑐,𝑗 . If the reconstruction error com-
puted by a detector model is above its threshold, then it considers
the explanation map to be abnormal. Finally, in both settings, if any
of the 𝑘 detector models classifies the respective explanation map
as abnormal, we infer that the input 𝑥 is an adversarial example.

4 EXPERIMENTS
In this section, we evaluate the effectiveness of ExAD. This section
is organized as follows. First, we provide details on the experiment
settings in Section 4.1. In Section 4.2, we report the performance
of the system on normal examples. Then, in Section 4.3, we show
the performance of ExAD on blackbox attacks. Next, we investi-
gate the generalizability of ExAD-CNN in Section 4.4. We compare

Table 1: Evaluation of blackbox attacks.

Attack Parameter Cost
(s)

Success
Rate

Prediction
Confidence

𝐿2
Distortion

M
N
IS
T

𝐿∞

CW∞ - 90.57 100% 39.11% 3.47
BIM eps:0.3 0.003 99% 99.94% 4.10
MIM eps:0.3 0.003 100% 99.99% 5.98

𝐿2 CW2 confidence:0 0.001 100% 97.11% 4.33

𝐿0
CW0 - 8.98 100% 38.18% 5.47
JSMA gamma:0.2 0.84 94% 76.86% 7.00

FM
N
IS
T

𝐿∞

CW∞ - 90.07 100% 38.51% 0.729
BIM eps:0.3 0.004 98% 100% 4.06
MIM eps:0.3 0.004 100% 100% 5.87

𝐿2 CW2 confidence:0 0.006 100% 96.09% 2.20

𝐿0
CW0 - 8.95 100% 37.80% 2.88
JSMA gamma:0.2 0.96 85% 83.20% 4.53

CI
FA

R-
10

𝐿∞

CW∞ - 68.90 100% 26.91% 1.19
BIM eps:0.3 0.008 100% 100% 6.1
MIM eps:0.3 0.001 100% 100% 7.9

𝐿2 CW2 confidence:0 0.005 100% 94.52% 3.86

𝐿0
CW0 - 13.35 100% 27.09% 2.98
JSMA gamma:0.2 6.42 100% 43.35% 1.78

Table 2: Classification accuracy on normal examples with
and without defense.

Dataset Accuracy
with-
out

ExAD

Top-1
Mean
Confidence

Accuracy
with
ExAD
(CNN)

FP rate
with
ExAD
(CNN)

Accuracy
with
ExAD
(AE)

FP rate
with
ExAD
(AE)

MNIST 99.15% 99.86% 98.26% 0.90% 98.54% 0.62%
FMNIST 90.68% 97.86% 89.70% 1.08% 89.91% 0.85%
CIFAR-10 84.54% 76.64% 83.74% 0.95% 83.85% 0.82%

the performance of our approach with three state-of-the-art detec-
tion methods in Section 4.5. Finally, in Section 4.6, we present our
evaluation on whitebox attacks.

4.1 Experimental settings
Environment. We implement the proposed framework using the
Python libraries Keras and TensorFlow. We conducted our experi-
ments on a Linux server with one GPU (GeForce RTX 2080 Ti) and
CPU (Intel Xeon Silver 4116 processor).

ImageDatasets. We evaluated the performance of our detection
mechanism on three image datasets: MNIST [27], Fashion-MNIST
(FMNIST) [49] and CIFAR-10 [24]. MNIST is a well-known gray-
scale image dataset of handwritten digits from 0 to 9. FMNIST
is a relatively more challenging dataset of article images where
each example is a 28x28 grayscale image associated with a label
from 10 classes (shirts, sandals, etc.). Both datasets consist of 60000
examples in the training set and 10000 examples in the testing set.
CIFAR-10 is a colored image dataset of tiny 32x32x3 images used for
object recognition. It comprises of 50000 training images and 10000
testing images. We chose MNIST and CIFAR-10 datasets as they
are most widely used for evaluating defenses against adversarial
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attacks [6, 33, 35, 50], and additionally used FMNIST as it provides
more challenges for a gray-scale dataset.

Training the Target Models. On MNIST and FMNIST datasets,
we trained a CNN based target model with 54000 examples in the
training set and 6000 examples in the validation set. For CIFAR-
10, we trained the CNN based target model with 44000 examples
in the training set and 6000 examples in the validation set. For
reproducibility, we refer to Appendix B.1 where Table 7 shows the
CNN architectures, and Table 8 shows the hyperparameters for
training the three target models.

Generating Adversarial Examples. As described in Section
2.3, we generate adversarial examples using six state-of-the-art
attacks- JSMA [39], BIM [26], MIM [11], and CW0, CW2, and CW∞
variants of the CW attack [7]. For JSMA, BIM, MIM, and CW2
attacks, we created adversarial samples using their implementations
in the Cleverhans library [38]. For CW0 and CW∞ attacks, we use
the implementation from the authors [5, 7]. For our evaluation,
we adopt the target-next attack setting in which the targeted label
is the class next to the ground truth class modulo the number of
classes (e.g., misclassify an input of class 4 to class 5). Table 1 shows
a summary of our evaluation of the six blackbox attacks.

We generate adversarial examples for two purposes. First, as
discussed in section 3.4, we need adversarial examples to derive
abnormal explanations for training and validating ExAD-CNN. To
this end, we consider each class in a dataset and generate as many
adversarial examples as the number of normal examples of that
class in the training and validation sets. These adversarial examples
are unevenly distributed by attack methods, due to relatively higher
cost involved in conducting certain attacks. Column 5 in Table 1
shows the average cost (in seconds) to generate one adversarial
example for different attacks. We observe that the CW∞, CW0, and
JSMA attacks incur much more overhead than remaining three
attacks. Therefore, we generate 80% of the examples using BIM,
MIM, and CW2 attacks, and the remaining using CW∞, CW0, and
JSMA attacks.We empirically found this distribution to be sufficient,
based on performance on the validation sets. Furthermore, seed
images for these adversarial examples are randomly selected from
normal examples of the source class. Note that we only utilize
examples from the training (resp., validation) set towards training
(resp., validating) ExAD; any example in the test set is considered
non-accessible for this purpose, as is standard practice.

The second purpose is to evaluate the detection rate of ExAD. To
this end, for every dataset, we generate 100 adversarial examples
using each attack. This number is consistent with previous works
[33, 50] and is limited since many attacks are too expensive to
execute. In this process, we create the same number of adversarial
examples for every target class to ensure a balanced evaluation.
Furthermore, seed images for adversarial examples are taken from
correctly classified examples in the test set so that the normal
counterparts are unseen by the target model, and the resulting
abnormal explanations are unseen by ExAD-CNN.

In Table 1, column 6 shows the success rate achieved by the
six blackbox attacks when ExAD is not included as a defense. We
consider an attack to be successful if the target model predicts the
targeted class. The resulting examples from such attacks are termed
as successful adversarial examples. We observe that most attacks are
very effective against three target models. The BIM, MIM, and CW2

attacks are particularly effective in generating high-confidence
adversarial examples as shown in column 7.

Training ExAD-CNN and ExAD-AE. We refer to Table 9 and
Table 10 in Appendix B.2 for details of the CNN architectures and
hyperparameters used for training the CNN-based and autoencoder-
based detector models, respectively. For each setting, we use the
same architecture and hyperparameters for all three datasets as the
performance on the respective validation sets was found acceptable.
As discussed in Section 3.4, for each target class, we train a detector
model for every explanation technique. For training and validation,
while ExAD-CNN uses both normal and abnormal explanations,
ExAD-AE only uses normal explanations. To obtain normal expla-
nations for a class, we take all its normal examples in our training
and validation sets and generate corresponding explanations. For
abnormal explanations (to be used by ExAD-CNN), we generate
explanations of the adversarial examples being classified as the
target class using each explanation technique. As discussed earlier,
for this purpose, we had generated as many adversarial examples
as the number of normal examples of each class in the training
and validation sets. This provides us with balanced training and
validation sets of normal and abnormal explanations. For ExAD-
CNN, we label the normal and abnormal explanations as negative
and positive class, respectively. We train the detector models on
the training set, and use the validation set for tuning the hyper-
parameters. For ExAD-AE, we exclude the abnormal explanations
in both training and validation sets (so that they online consist of
normal explanations). Then, we train the detector models on the
training set, and use the validation set for setting the threshold 𝑡re
values. Also, for computing the reconstruction error (equation 1),
we empirically find it sufficient to use the 𝐿2 norm. Furthermore,
we selected the threshold 𝑡re such that the false-positive rate for
any detector model is at most 0.2% on its validation set.

Comparison.We compare ExAD with three state-of-the-arts-
MagNet [35], Feature Squeezing (FS) [50], and LID [34]. For their
implementation, we use the respective GitHub repositories. We fol-
low instructions in the repositories and papers to identify optimal
configurations. Feature Squeezing, in particular, allows many con-
figurations for its squeezers. Consistent with the author’s work, we
utilize the optimal join-detection setting with multiple squeezers.
For MNIST and FMNIST, we use the combination of a 1-bit depth
squeezer with 2x2 median smoothing. For CIFAR-10, we use a 5-bit
depth squeezer with 2x2 median smoothing and 13-3-2 non-local
means filter. To ensure fair comparison, for all detection methods,
we set thresholds such that the false-positive rate on the validation
set is at most 0.2% (same as ExAD). Additionally, our comparison
could not include NIC [33] as it is yet to be made open-source, and
we were not successful in reproducing the system.

4.2 Performance on normal examples
Table 2 shows the classification accuracy of the three target models
on their test set (of normal examples). Without ExAD, we achieve
an accuracy of 99.15%, 90.68%, and 84.54% for MNIST, FMNIST,
and CIFAR-10 datasets, respectively. When ExAD is included as
a defense, it is possible that a correctly classified normal example
(by the target model) is misclassified as an adversarial example,
termed as a false-positive (FP). With ExAD-CNN, we obtained a
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Table 3: Detection rate of ExAD on blackbox attacks and comparison with state-of-the-art detection methods.

Dataset Attack Parameter No Defense ExAD-CNN ExAD-AE MagNet [35] FS [50] LID [34]
M
N
IS
T

𝐿∞
CW∞ - 0% 100% 100% 96% 100% 92%
BIM eps:0.3 1% 100% 100% 100% 97.98% 97.98%
MIM eps:0.3 0% 100% 100% 100% 98% 99%

𝐿2 CW2 confidence:0 0% 100% 100% 86% 100% 91%
𝐿0 CW0 - 0% 100% 100% 86% 91% 91%

JSMA gamma:0.2 6% 100% 100% 84.04% 100% 93.62%

FM
N
IS
T

𝐿∞
CW∞ - 0% 100% 100% 97% 100% 94%
BIM eps:0.3 2% 100% 100% 100% 97.96% 93.88%
MIM eps:0.3 0% 100% 100% 99% 99% 95%

𝐿2 CW2 confidence:0 0% 100% 100% 85% 100% 92%
𝐿0 CW0 - 0% 100% 100% 85% 90% 91%

JSMA gamma:0.2 15% 100% 100% 87.06% 100% 92.94%

CI
FA

R-
10

𝐿∞
CW∞ - 0% 99% 100% 84% 98% 90%
BIM eps:0.3 0% 100% 100% 100% 52% 97%
MIM eps:0.3 0% 100% 100% 100% 51% 97%

𝐿2 CW2 confidence:0 0% 100% 100% 92% 100% 89%

𝐿0
CW0 - 0% 98% 100% 76% 98% 91%
JSMA gamma:0.2 0% 100% 99% 95% 83% 92%

false-positive rate of 0.90% onMNIST dataset, as 89 of 9915 correctly
classified normal examples are classified as adversarial. Thus, with
ExAD-CNN, the accuracy of the target system is reduced only
slightly to 98.26%. Similarly, on FMNIST and CIFAR-10 datasets,
the accuracy has a minor drop to 89.70% and 83.74%, respectively.
The low false-positive rates are indicative of explanation maps of
normal examples rarely being mistaken as abnormal by the detector
models. This allows us to maintain a strict policy of classifying a
test input as adversarial if even a single detector model considers
its explanation map as abnormal.

With ExAD-AE, we obtain false-positive rates of 0.62%, 0.85%,
and 0.82% on the test sets ofMNIST, FMNIST, and CIFAR-10 datasets,
respectively. The accuracy of the target systems under this setting
is 98.54% for MNIST, 89.91% for FMNIST, and 83.85% for CIFAR-10
dataset. These results are close to the performance of ExAD-CNN
on normal examples. In the following section, we show that both
settings of ExAD can effectively detect adversarial attacks while
maintaining these low false-positive rates.

4.3 Evaluation on blackbox attacks
Table 3 shows the detection rates of our approach on the six black-
box attacks. Columns 1-4 show datasets and details of the attacks.
Column 5 shows the detection rate of adversarial examples when
ExAD is not included as a defense (which corresponds to the success
rate achieved by blackbox attacks on the target models). Columns
6 and 7 show the detection rates of ExAD-CNN and ExAD-AE,
respectively. Note that, except when noted explicitly, “detection
rate" of a detection method refers to its detection rate on successful
adversarial examples, consistent with previous work [50]. The re-
maining columns report our comparison with three state-of-the-art
detectors, which we will discuss in Section 4.5.

We first consider the ExAD-CNN setting. For this setting, our
approach achieves consistently high detection rates for all attacks

across the three datasets. As shown in Table 3, for MNIST and
FMNIST datasets, we get 100% detection rates for all six attacks.
For CIFAR-10 dataset, we obtain 98% detection rate for CW2 and
CW0 attacks, and 100% detection rate for remaining attacks. For
the ExAD-AE setting, the detection rate of adversarial examples is
again consistently high. We achieve 100% detection rate for all six
attacks on MNIST and FMNIST datasets. On CIFAR-10 dataset, we
obtain a 99% detection rate for JSMA attack. For all other attacks
on CIFAR-10 dataset, the detection rate is 100%.

While we find both settings of ExAD are effective against adver-
sarial attacks, each has its own relative advantages and disadvan-
tages. A benefit of ExAD-AE is that it does not rely on adversarial
examples for training or validation. This reduces the training over-
head as many adversarial attacks incur significant cost (Table 1).
More importantly, being attack-independent, the performance of
ExAD-AE indicates that our approach generalizes well to unknown
attacks. But, compared to the effort required in setting the threshold
𝑡re values for ExAD-AE, it is relatively simpler to tune the hyperpa-
rameters for ExAD-CNN. However, training the detector models
in ExAD-CNN requires adversarial examples (to derive abnormal
explanations). In the following section, we investigate the extent to
which this requirement impacts the generalizability of ExAD-CNN
in detecting unknown attacks.

4.4 Generalizability of ExAD-CNN
In the generation of abnormal explanations, we notice that adver-
sarial examples created using attacks of the same category (𝐿∞ or
𝐿0) produce similar explanations. We illustrate this phenomenon for
interested readers in Figure 6 in Appendix C. Using this observation,
we leave out the CW∞ and CW0 attacks, and only use adversarial
examples from other four attacks for training ExAD-CNN. We keep
other training and attack parameters same as before. In Table 4,
columns 2-4 show the new performance of ExAD-CNN. On MNIST
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Table 4: Detection rate of ExAD-CNN with limited attacks
used in training.

Attack Train on BIM, MIM, CW2, JSMA Train only on CW2

MNIST FMNIST CIFAR-10 MNIST FMNIST CIFAR-10
CW∞ 100% 100% 92% 99% 99% 96%
BIM 100% 100% 100% 97.98 % 96.94% 100%
MIM 100% 100% 100% 89% 86% 100%
CW2 100% 100% 100% 100% 100% 100%
CW0 100% 100% 92% 100% 97% 91%
JSMA 100% 100% 100% 91.49% 94.12% 87%

Table 5: False-positive rates obtained for MagNet [35],
FS [50], and LID [34].

Dataset MagNet [35] FS [50] LID [34]
MNIST 0.50% 3.85% 4.24%
FMNIST 0.81% 3.76% 3.89%
CIFAR-10 4.25% 4.81% 5.36%

and FMNIST datasets, we find that ExAD-CNN effectively detects
the unknown attacks. On CIFAR-10, ExAD-CNN still achieves a
good detection rate of 92% for both unknown attacks, CW∞ and
CW0. We also observe that the detection of other attacks is not
affected on any dataset. These results appear to indicate that abnor-
mal explanations are influenced more by the original class of the
seed images and the category (norm) of the attack, rather than the
attack variant in that category used to craft the adversarial exam-
ples. This allows ExAD-CNN to generalize well to unknown attacks
when we train on representative attacks from different categories.
Furthermore, to study the generalizability in a more restrictive case,
we only train ExAD-CNN on CW2 attack. Columns 5-7 in Table
4 show the performance under this scenario. For all datasets, we
find the results are good on the three CW attacks, with the lowest
detection rate of 91% obtained for CW0 attack on CIFAR-10 dataset.
For BIM attack, the performance remains consistently high across
datasets. However, the detection is less effective for MIM attack on
MNIST and FMNIST datasets, for which we have 89% and 86% detec-
tion rates, respectively, and for JSMA attack on CIFAR-10, for which
we obtain 87% detection rate. Overall, we see that ExAD-CNN can
detect many unknown attacks even in this restrictive case, but there
is still room for improvement. For boosting the detection in such
scenarios, we can consider performing join-detection using both
ExAD-CNN and ExAD-AE (which obtained high detection rates
while being attack-independent). Building such joint-detectors to
improve generalizability will be an interesting topic for future work.

4.5 Comparison
Table 3 shows the comparison of ExAD with three state-of-the-art
adversarial detection methods- MagNet [35], Feature Squeezing
[50], and LID [34]. The false-positive rates for these methods on
the test sets are reported in Table 5.

MagNet. We find that MagNet’s false-positive rates on the two
grayscale datasets are marginally lower than those of ExAD-AE.
However, it has much higher false-positive rate of 4.25% on CIFAR-
10 dataset.We also find its detection performance to vary depending

upon the dataset and attack-norm. MagNet uses trained autoen-
coders to detect adversarial examples, and to reform them based on
the differences between the manifolds of normal and adversarial
examples. MagNet’s denoising strategy is quite effective against 𝐿∞
attacks, for which adversarial examples tend to have a large number
of modified pixels, with a limit on the change per pixel. MagNet
achieves high detection rates (most being 100%) for 𝐿∞ attacks on
both grayscale datasets. On CIFAR-10, a colored dataset, it achieves
similar performance on BIM and MIM attacks, but relatively low
detection rate of 84% on CW∞ attack. Furthermore, we observe that
MagNet’s denoising mechanism is not as effective on 𝐿0 attacks.
These attacks make changes of high magnitude to very few pixels,
thereby making denoising difficult. This is consistent with findings
by Ma et al. [33]. Similarly, we find MagNet’s performance on CW2
attack is not as good on MNIST and FMNIST datasets. Moreover,
MagNet requires training a single detector network, which is com-
putationally expensive. A benefit of our approach is that we use
small detector models for every class, which are much easier to
train. This makes our approach more practical.

LID. We find the detection performance of LID to be consistent
across attacks and datasets. This method computes an LID value
that captures the intrinsic dimensional properties of adversarial
regions[34]. LID achieves its highest detection for 𝐿∞ attacks on
the three datasets. For most of the other attacks, its detection was
consistently above 90%. However, as shown in Table 5, a downside
of using LID values is the relatively higher false-positive rates on
normal examples, which impacts the reliability of its classifications.

Feature Squeezing. For Feature Squeezing, we observe that
joint-detection provides fairly consistent detection rates (Table 3),
but introduces high false-positive rates between 3.76% to 4.81%
(Table 5). This is natural, given the use of a single threshold across
all squeezers, consistent with original work [50]. Nevertheless, as
reported by the authors, this can be improved by combining mul-
tiple squeezers with different thresholds in future work. Feature
Squeezing obtains very high detection rates on all attacks onMNIST
and FMNIST datasets. On CW2 attack, it achieves 100% detection
rate on all three datasets. However, for 𝐿∞ attacks, while it obtains
detection rates of above 98% on CW∞ attack, we find it less effective
against BIM and MIM attacks on CIFAR-10 dataset with a detection
rate of nearly 52%. This reflects upon the generalizability challenges
in building squeezers. In contrast, our approach is more general
and achieves consistent detection and false-positive rates.

4.6 Evaluation with adaptive adversaries
In this section, we evaluate our defense, with the ExAD-CNN set-
ting, under whitebox threat model for an adaptive adversary. Here,
we build upon recent research that shows that explanations can be
unreliable [22] and can be manipulated to produce a target expla-
nation map [10, 52]. Below, we present our approach to conduct a
whitebox attack for generating an adversarial example.

Whitebox Attack Approach. Given a normal or seed image
𝑥 ∈ R𝑑 with correctly classified class𝐶 (𝑥) = 𝑐 by target model 𝑓 (·),
we follow a two-step process towards conducting a whitebox attack.
First, we use a blackbox attack to generate an adversarial example
𝑥 ′ which is misclassified as 𝐶 (𝑥 ′) = 𝑡 , where 𝑡 is the targeted class.
While 𝑥 ′ is likely to fool 𝑓 (·), it is likely to be correctly classified
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Table 6: Evaluation of whitebox attacks.

Target
Explanation
Method

Mean Success
Rate without

defense

Cost (s) 𝐿2
Distortion

M
N
IS
T

LRP 99.00% 137.07 2.49
GBP 95.17% 50.15 2.64
IG 82.00% 506.75 2.81
PA 96.17% 57.74 2.55
GTI 91.50% 48.96 2.50

FM
N
IS
T

LRP 99.17% 169.36 2.28
GBP 95.33% 51.03 2.34
IG 89.00% 510.47 2.33
PA 93.67% 57.77 2.76
GTI 91.50% 49.12 2.31

CI
FA

R-
10

LRP 99.00% 138.83 2.26
GBP 97.33% 51.35 2.24
IG 94.00% 484.02 3.87
PA 96.00% 66.53 3.20
GTI 95.33% 66.80 3.45

Figure 4: Transferability of whitebox attack
as an adversarial example by the defense, which has not yet been
accounted for by the attack. As a next step, we consider a target
explanation technique ℎ 𝑗 , which produces an explanation map
ℎ 𝑗 (𝑥 ′) that is correctly classified as abnormal by the corresponding
detector model 𝑔𝑡, 𝑗 (·). Our goal in this step is to manipulate 𝑥 ′ to
create a final adversarial example 𝑥 ′′ = 𝑥 ′ + 𝛿𝑥 ′, such that

• The target model’s classification remains approximately con-
stant, i.e. 𝑓 (𝑥 ′′) ≈ 𝑓 (𝑥 ′)

• The explanation map ℎ 𝑗 (𝑥 ′′) is close to a target explanation
map ℎ𝑡

𝑗
that is classified as normal by 𝑔𝑡, 𝑗 (·)

• The norm of the perturbation 𝛿𝑥 ′ added is small so that it
remains imperceptible.

To obtain the target explanation map ℎ𝑡
𝑗
, we randomly select a

normal example 𝑥𝑟 from class 𝑡 and check if its explanation map
ℎ 𝑗 (𝑥𝑟 ) is classified as normal by 𝑔𝑡, 𝑗 (·). If so, we set the target
explanationmap asℎ𝑡

𝑗
= ℎ 𝑗 (𝑥𝑟 ). Else, we repeat the process until we

find such an example. This search is fairly quick because explanation
maps of normal examples of a class are very likely to be correctly
classified as normal by the detector models. Finally, we generate
𝑥 ′′ by optimizing the following loss function

L = | |ℎ 𝑗 (𝑥 ′′) − ℎ𝑡𝑗 | |
2 + 𝛾 | |𝑓 (𝑥 ′′) − 𝑓 (𝑥 ′) | |2 (2)

with respect to 𝑥 ′′ using gradient descent, such that ∥𝛿𝑥 ′∥2 < 𝜖 .
The first term in the loss function ensures that the explanation map
for 𝑥 ′′ is close to the target map, while the second term ensures the
prediction by the target model is still the misclassified class 𝑡 . The
weighting of these two terms is controlled by hyperparameter 𝛾 ∈
R+. To compute the gradient with respect to the input▽ℎ 𝑗 (𝑥 ′′), we
follow the strategy by Dombrowski et al. of replacing relu with the
softplus function to circumvent the problem of vanishing second-
derivative [10]. A similar strategy of approximating relu was used
by Zhang et al. [52]. After the optimization completes, we test
whether the manipulated image 𝑥 ′′ fools the original relu-based
target model 𝑓 (·) as well as our defense. We provide an illustration
of our whitebox approach in Appendix D.

Evaluation of Whitebox Attack. To perform the first step of
the above approach, we re-use the successful adversarial examples
𝑋 ′ created using blackbox attacks. However, while targeting inte-
grated gradients (IG), we only used adversarial examples from CW2
attack as we find targeting IG to incur very high cost. For targeting
remaining techniques, we use adversarial examples from all six
attacks. Then, for each adversarial example 𝑥 ′ ∈ 𝑋 ′, we perform
the second step using the optimization process described above to
obtain final adversarial examples 𝑋 ′′.

Table 6 shows a summary of the whitebox attack. Column 3
shows the mean success rate of the final adversarial examples in
retaining the desired misclassification in the target model (when
ExAD is not included). The mean is computed over success rates
obtained for different attacks (except for IG where we only use CW2
attack). We do not show individual success rates for each attack
as they were very similar for any target technique. In Table 6, we
observe that targeting LRP results in the highest success rate, with
least 𝐿2 distortion. However, as shown in Column 4, the average
time required per example to target LRP is over 130 seconds which
is quite high compared to targeting GBP, PA, or GTI techniques.

Figure 4 shows the results of the whitebox attack. Each row
represents the targeted explanation technique. Columns 1-5 show
the detection rate obtained by individual detector models corre-
sponding to the five explanation techniques in correctly classifying
explanation maps as abnormal. Column 6 shows the overall per-
formance by ExAD-CNN in correctly classifying the examples as
adversarial. From Figure 4, we make several interesting observa-
tions. First, we notice the values along the diagonal (from top-left to
bottom-right) are all very low. This is natural as the detector model
corresponding to the targeted technique is expected to correctly
classify very few explanations as abnormal. For instance, targeting
GTI causes its detector model to have a detection rate of only 19.41%.
Second, we observe that targeting gradient-based techniques do not
severely impact detector models of propagation-based techniques,
and vice-versa. For instance, on targeting IG or GTI, the detector
models corresponding to LRP, GBP, and PA still achieve detection
rates above 85%. This is consistent with the transferability find-
ings by Zhang et al. [52]. On a different set of diverse explanation
techniques, the authors showed that manipulated images created
by targeting one technique rarely produce desirable explanations
(which are close to the target map) on other techniques. Finally, we
find that targeting propagation-based (resp., gradient-based) tech-
niques transfer well to detector models corresponding to the other
propagation-based (resp., gradient-based) techniques. For instance,
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targeting LRP results in the GBP-based detector model to have a
detection rate of only 17.82%. The same phenomenon can be ob-
served for gradient-based techniques (IG and GTI). This empirically
supports the need to have diversity in the explanation methods to
build robustness against adaptive attacks. As shown in Column 6
of Figure 4, using an ensemble of gradient-based and propagation-
based techniques, ExAD is able to significantly limit the success
rate of whitebox attacks. We find ExAD to be relatively more robust
when gradient-based techniques are targeted. We achieve 99.67%
and 98.94% detection rate for IG and GTI as the target, respectively.
For propagation-based techniques, the highest impact is caused by
targeting PA, which results in a detection rate of 88.61%. For the
case of targeting LRP and GBP, we obtain detection rates of 90.11%
and 91.55%, respectively. Appendix E includes further analysis on
transferability of whitebox attack for individual datasets.

5 DISCUSSION
5.1 Fragility of Explanations
In Section 4.6, we discussed the reliability of explanations in context
of an adaptive adversary. Recently, there has also been research
that shows the fragility of explanations in an adversarial context.
In this section, we discuss two related scenarios and any potential
impact to our defense strategy.

5.1.1 Hiding the attack from explanations. Recently, adversarial
patches [4, 21] were introduced to make adversarial examples more
practical in the physical world. This attack restricts the spatial
dimensions of the perturbation, but removes the imperceptibility
constraint. However, Subramanya et al. [45] demonstrated that we
can generate adversarial patches that not only fool the prediction by
the target classifier, but also change the explanation of the modified
example such that the adversarial patch is no longer considered
important. Nevertheless, here the attacker only manages to make
the explanation technique focus in a region outside the adversarial
patch; she does not try to make the explanation itself appear more
normal for the target class. Therefore, even though such adversarial
examples may evade the explanation mechanism, they are still
likely to be correctly classified as adversarial by our defense.

5.1.2 Changing the explanation but not the classification. An at-
tacker may add adversarial perturbations which produce examples
that are classified into the same class, but have very different expla-
nations [13]. With our defense, if such explanations are classified
as abnormal by the detector models, then the corresponding inputs
would be considered adversarial. Nevertheless, we believe the im-
pact of this attack may depend upon the nature of the application
where the defense is being used. If the perturbed examples resulting
from such attacks are not considered normal for the system, then
the abnormality produced in the explanations can be beneficial be-
cause the examples will likely be classified as adversarial. However,
if an application considers such perturbed examples as normal, such
as if the norm of perturbation is within an allowed threshold, then
our defense could result in false-positives. We refer to Figure 10 in
Appendix F which shows the effect of such attacks on the target
classifier’s accuracy for this case. For such applications, we would
require explanation techniques to be robust enough to allowed

perturbations. We leave further research towards such methods as
future work.

5.2 Limitations
Our detectionmechanism and scope of evaluation has certain limita-
tions. First, our current evaluation only considers the targeted attack
setting for generating adversarial examples. In future work, we will
extend our evaluation to cover untargeted adversarial attacks as
well. Second, currently we do not have a unified optimization-based
approach that simultaneously (and successfully) targets multiple
explanation techniques. We attempt doing so in two ways. One
approach is to modify the loss function 2 as follows

L =

( 5∑
𝑗=1

| |ℎ 𝑗 (𝑥 ′′) − ℎ𝑡 | |2
)
+ 𝛾 | |𝑓 (𝑥 ′′) − 𝑓 (𝑥 ′) | |2 (3)

Here, we create the target map ℎ𝑡 using any one of the explanation
techniques. However, in this case, when the target map is created
using a gradient-based technique, we did not notice any significant
change in the performance of the detector models corresponding
to propagation-based techniques, and vice-versa. The results re-
mained consistent with our findings in Figure 4. One reason behind
this could be the diversity in explanation techniques due to which
the target maps required by gradient-based techniques differ sub-
stantially from those required by propagation-based techniques.
Then, we further consider modifying the loss function 3 as follows

L =

( 5∑
𝑗=1

| |ℎ 𝑗 (𝑥 ′′) − ℎ𝑡𝑗 | |
2
)
+ 𝛾 | |𝑓 (𝑥 ′′) − 𝑓 (𝑥 ′) | |2 (4)

Here, target maps used are created using the corresponding expla-
nation techniques. However, in this case, we found the explanation-
loss component did not reduce much during the optimization pro-
cess. Moreover, it often led to memory errors on the GPU. One
reason for this is that in the current whitebox attack framework[10],
each explanation technique requires a different set of hyperparame-
ters (e.g., learning rate, 𝛽 growth, and iterations), as shown in Table
11 in Appendix B.3. Therefore, we find that simultaneously attack-
ing multiple explanation techniques is considerably difficult for an
adaptive adversary. We leave further exploration on improving the
efficiency and effectiveness of such attack to future work.

6 CONCLUSION
We proposed ExAD, a framework to detect adversarial examples
using an ensemble of explanation techniques. The use of explana-
tions is motivated by the distinguishability between normal and
abnormal explanations for any target class. Furthermore, motivated
by previous work on N-variant systems, we used an ensemble of
gradient-based and propagation-based explanation techniques to
introduce diversity in our defense. Experiments showed that our ap-
proach is effective against blackbox attacks, and outperforms three
state-of-the-art detectors. We also find that ExAD significantly lim-
its the success rate of whitebox attacks. In this process, we made
interesting findings on the transferability of adaptive attacks. We
acknowledge the possibility of more sophisticated whitebox attacks
in future, and hope our work will inspire further research in this
direction. We believe our proposed defense is complementary to
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state-of-the-art detection methods and can be used in conjunction
with them to boost the detection of adversarial attacks.
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A SIMILARITY IN NORMAL EXPLANATIONS
Our approach is motivated by the observation that normal examples
of a class tend to have similar (normal) explanations, and that a
detector model can learn to distinguish between them and the
(abnormal) explanations of adversarial examples targeting that class.
Figure 5 shows an example of the similarity in normal explanations.
The first row shows five normal examples from the Coat class of
FMNIST dataset. The third row shows normal examples from the
Airplane class of CIFAR-10 dataset. The fifth row shows normal
examples of class Three from MNIST dataset. The second, fourth,
and sixth rows show corresponding explanations for the preceeding
row using the IG, LRP, and GBP techniques, respectively.

Figure 5: Similarity in normal explanations.

B IMPLEMENTATION DETAILS
B.1 Training the Target Models
Table 7 shows the architecture of the target models for MNIST,
FMNIST, and CIFAR-10 datasets.

Table 7: Architecture of the image classifiers to be defended.

MNIST FMNIST CIFAR-10
Conv.ReLU 8x8x64 Conv.ReLU 3x3x32 Conv.ReLU 3x3x64
Conv.ReLU 6x6x128 Conv.ReLU 3x3x32 Conv.ReLU 3x3x128
Conv.ReLU 5x5x128 MaxPooling 2x2 AvgPooling 2x2
Softmax 10 Conv.ReLU 3x3x64 Conv.ReLU 3x3x128

Conv.ReLU 3x3x64 Conv.ReLU 3x3x256
MaxPooling 2x2 AvgPooling 2x2
Dense.ReLU 200 Conv.ReLU 3x3x256
Dense.ReLU 200 Conv.ReLU 3x3x512
Softmax 10 AvgPooling 2x2

Conv.ReLU 3x3x10
Softmax 10

Table 8 shows the training and architecture hyperparameters for
the target models of the three datasets.

Table 8: Training and architecture hyperparameters of the
image classifiers to be defended

Hyperparameter MNIST FMNIST CIFAR-10
Learning Rate 0.001 0.01 0.001

Optimization Method Adam SGD Adam
Batch Size 128 128 256
Epochs 50 50 50

Padding (Conv layers) Valid Valid Same

B.2 Training Detector Models of ExAD
Table 9 shows the architecture and hyperparameters used for ExAD-
CNN.

Table 9: Architecture and hyperparameters of ExAD-CNN

Architecture Hyperparameters
Conv.ReLU 3x3x32 Learning Rate 0.01
Conv.ReLU 3x3x64 Optimization Method Adam
MaxPooling 2x2 Batch Size 32
Conv.ReLU 3x3x128 Epochs 50
Conv.ReLU 3x3x128 Padding (Conv layers) Same
MaxPooling 2x2
Dense.ReLU 512
Dense.ReLU 64
Softmax 2

Table 10 shows the architecture and hyperparameters used for
ExAD-AE. For MNIST and FMNIST datasets, 𝐻 = 𝑊 = 28. For
CIFAR-10 dataset, 𝐻 =𝑊 = 32.

Table 10: Architecture and hyperparameters of ExAD-AE

Architecture Hyperparameters

Dense.ReLU HxW Learning Rate 10−5

Dense.ReLU 400 Optimization Method Adam
Dense.ReLU 20 Batch Size 32
Dense.ReLU 400 Epochs 100
Dense.ReLU HxW
Softmax 2

B.3 Performing Whitebox Attack
Table 11 shows the hyperparameters for the whitebox attack.

Table 11: Hyperparameters used in whitebox attack.

Method Iterations Learning Rate Factors

LRP 1500 10−3 2x10−4, 106

GBP 1500 10−3 1011, 106

IG 500 5𝑥10−3 1011, 106

PA 1500 2𝑥10−3 1011, 106

GradxInput 1500 10−3 1011, 106
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C GENERALIZABILITY OF EXAD-CNN
Figure 6 shows explanation maps produced by the integrated gradi-
ents (IG) technique for adversarial examples created using different
attacks. Rows 1 and 2 show explanation maps for adversarial exam-
ples which were created using CW∞ and BIM attacks, respectively.
Both attacks come under the 𝐿∞ category. The adversarial examples
are targeting the Pullover class and their seed images are taken
from the Trouser class of FMNIST dataset. Comparing explanation
maps in row 1 and row 2 shows that adversarial examples created
using different attacks, under the same category (𝐿∞ in this case)
can result in similar explanation maps. This can also be observed
for CIFAR-10 dataset (rows 3-4), where we use two 𝐿0 attacks, and
MNIST dataset (rows 5-6), where we again use two 𝐿∞ attacks.

Figure 6: Similarity in explanation maps of adversarial ex-
amples created using different attacks.

D ILLUSTRATION OF WHITEBOX ATTACK
Figure 7 shows an illustration of our whitebox attack approach,
discussed in Section 4.6. The leftmost image in the first row shows
a seed image 𝑥 , which is a normal example from class Airplane
of CIFAR-10 dataset. In the first step, we use CW∞ attack to add
perturbations 𝛿𝑥 to 𝑥 , which results in the adversarial example
𝑥 ′ = 𝑥 + 𝛿𝑥 . The rightmost image of row 1 shows 𝑥 ′. The example
𝑥 ′ is misclassified as class Automobile by target model 𝑓 (·). The
second row shows the explanation maps produced for 𝑥 ′ by the five
techniques. We find that all detector models classify these explana-
tion maps as abnormal. We observe in row 2 that the explanation
maps are not consistent with the expected normal explanations
of class Automobile. As an adaptive adversary, we now intend to
target an explanation technique. For this illustration, we choose to
target LRP. To this end, we randomly select an example 𝑥𝑟 from
class Automobile, for which the explanation map produced by LRP
is classified as normal by the corresponding detector model. We
show 𝑥𝑟 as the first image in row 3. Its explanation map by LRP,
shown as the second image in row 2, is set as the target map ℎ𝑡

𝐿𝑅𝑃
.

Then, we perform the optimization for the loss function 2 (shown
in Section 4.6) using 𝑥 ′ and ℎ𝑡

𝐿𝑅𝑃
. After the optimization completes,

we obtain the final adversarial example 𝑥 ′′ = 𝑥 ′ + 𝛿𝑥 ′, which is
shown as the rightmost image in row 4. The bottom row shows

Figure 7: Illustration of whitebox attack.

the explanation maps produced by the five techniques for 𝑥 ′′. We
observe that targeting LRP results in the explanation map produced
by LRP (first image in row 5) to be very close to the target map.
Also, the explanation maps for GBP (second image in row 5) and
PA (fourth image in row 5) are also fairly close to the target map.
We find that all three of these explanation maps are classified as
normal by their respective detector models. However, we observe
that the explanation maps produced by the gradient-based tech-
niques, i.e., IG (third image in row 5) and GTI (rightmost image in
row 5), are not as close to the target map. Both these explanation
maps are classified as abnormal by their respective detector models.
Therefore, using an ensemble of detector models corresponding
to diverse explanation techniques, our defense is able to mitigate
this whitebox attack by correctly identifying 𝑥 ′′ as an adversarial
example.

E TRANSFERABILITY OF WHITEBOX
ATTACKS

Figure 8 shows results on the transferability of whitebox attack
on explanation-based detector models, as well as the detection
rates obtained by our defense (under ExAD-CNN setting), for the
three datasets. Previously, we had only shown mean values across
datasets in Figure 4. In Figure 8, each value shows the mean detec-
tion rate for adversarial examples created using different attacks
(except while targeting IG technique which only uses CW2 attack)
and considering all target classes. On all three datasets, we find that
targeting a gradient-based technique has relatively less impact on
detector models corresponding to propagation-based techniques.
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Figure 8: Transferability of whitebox attack on individual datasets.

For instance, targeting GTI on MNIST causes the IG-based detector
model to have a detection rate of only 56.70% whereas detector
models corresponding to LRP, GBP, and PA have detection rates
above 89%. Interestingly, on CIFAR-10 dataset, we observe that the
detector models corresponding to IG and GTI are impacted by most
techniques, although the impact is relatively higher when we target
either of IG or GTI. For instance, on CIFAR-10 dataset, targeting PA
has a noticeable impact on IG-based detector model as it achieves
a detection rate of 60.39%, whereas targeting GTI results in the
IG-based detector model to have a relatively lower detection rate
of 50.26%.

In terms of impact on ExAD, on all three datasets, targeting
gradient-based techniques (IG and GTI) is relatively less effective.
For instance, on MNIST, we obtain 100% detection rate by our
approach while targeting IG and GTI techniques. In contrast, we
observe that targeting propagation-based techniques is more ef-
fective across datasets. On MNIST dataset, the detection rate of
the defense on propagation-based techniques is nearly 89%. On
CIFAR-10 dataset, targeting PA results in the lowest detection rate
of 80.67% by ExAD. On FMNIST dataset, the overall performance
is fairly consistent while targeting propagation-based techniques.
The highest impact is produced by targeting PA and LRP, for which
ExAD obtains detection rates of 95.50% and 95.67%, respectively.

F FRAGILITY OF EXPLANATIONS

Figure 9: Effect of adding random perturbations, with in-
creasing threshold of 𝐿∞ distance, on explanations by LRP.

Figure 10: Impact of fragility of explanations [13].

In Section 5.1.2, we discussed an attack which shows the fragility
of explanations [13]. Figure 9 shows an example of this attack for
the case of random perturbations. The leftmost image in first row
is a normal example from the Sneaker class of FMNIST dataset.
The next image in first row shows a manipulated image created
by adding random perturbations to the normal example such that
the prediction remains unchanged, and the perturbations do not
exceed a threshold value of 1, in terms of 𝐿∞ distance. The next
three images are created in a similar manner but with increased
threshold values of 2, 4, and 8, respectively. The second row shows
the corresponding explanations produced by LRP technique. We
observe that with increased noise threshold, the explanations also
become noisy. With our defense, if such explanations are classified
as abnormal, then the corresponding inputs would be considered
adversarial (false-positive). Figure 10 shows that adding random
perturbations to normal examples results in a decline of the target
classifier’s classification accuracy with increasing noise threshold.
We discussed in Section 5.1.2 that the impact of this attack depends
on the nature of the application using the defense. For instance, our
approach will not adversely impact applications which consider
such perturbed examples as abnormal.

15



A Simple Framework for Bias Mitigation via
Decorrelating Feature Influence
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Abstract

We demonstrate that algorithmic discrimination can be explained by the high1

reliance of models on fairness sensitive features, which denotes features that are2

highly predictive with protected attributes such as gender and race. Motivated3

by this observation, we propose to achieve fairness by decorrelating the main4

prediction task with those fairness sensitive features. Specifically, we firstly train a5

biased teacher model which is explicitly encouraged to employ fairness sensitive6

features for prediction. The teacher model then counter-teaches a debiased student7

model so as to enforce student model to capture complementary knowledge with8

teacher model. Experimental analysis indicates that our framework dramatically9

reduces model’s attention on fairness sensitive features. Experimental results on10

four datasets further show that our proposed method could increase fairness in terms11

of three metrics, with a negligible decrease of (or better) classification accuracy.12

1 Introduction13

Deep learning is increasingly being used in high-stake decision making applications that affect14

individual lives. However, deep learning models might exhibit algorithmic discrimination behaviors15

with respect to protected groups. For example, a recruiting tool believes that men are more qualified16

and shows bias against women [1], facial recognition performs extremely poorly for darker skin17

females [2]. The fairness problem might cause adverse impacts on individuals and society. Therefore,18

designing mitigation methods to reduce unintentional bias has received much attention recently [3].19

In this work, we show that the discrimination behavior is a direct result of our models’ high reliance20

on fairness sensitive features in input. Here fairness sensitive features denote those features (e.g., ZIP21

code and surname) that are highly predictive of protected attribute (e.g., race). As a result, the main22

prediction task (e.g., mortgage application) would highly rely on the protected attribute (e.g., race)23

for prediction and introduce discrimination for certain group (e.g., African Americans).24

Motivated by this observation, we propose a general framework for bias mitigation, called DeFI25

(Decorrelating Feature Influence), to disentangle the main prediction task and fairness sensitive26

features. The key idea is to suppress the model from capturing spurious correlations between fairness27

sensitive features with main prediction task, while forcing the model to concentrate on task relevant28

features. However, a key challenge lies in how to locate fairness sensitive features in input. One29

straightforward idea is to label the whole training set by crowd workers or domain experts. This30

would lead to suboptimal results. On one hand, crowd sourcing labelling is too time consuming. On31

the other hand, many seemingly innocuous features may be highly correlated with protected attribute32

and cause model bias. It is extremely hard to annotate all these features manually.33

To tackle the challenges, we introduce a biased teacher network, which primarily leverages sensitive34

features in the input in order to succeed. Fairness sensitive features can be automatically localized35
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by the biased teacher network. This teacher network could then counter-teach a debiased student36

network, so as to encourage the student to focus on more generalizable features for prediction. At37

test time, our method does not need access to sensitive attributes, since collecting sensitive attributes38

is often not allowed in real-world applications. In the context of fairness, there is more than a single39

protected attribute. Experimental results on several fairness benchmarks validate that the trained40

student network mainly relies on features that are more likely to generalize. We demonstrate that41

DeFI could reduce biases while could maintain original model prediction accuracy. Moreover, DeFI42

also could take into consideration of multiple protected attribute, and achieve compositional fairness.43

2 Related Work44

Fairness in Machine Learning. Work for fairness in machine learning mainly could be grouped45

into three categories: 1) proposing definitions of fairness in different contexts, such as individual46

fairness [4], demographic parity [5], and equality of opportunity [6, 7], 2) demonstration of biases in a47

variety of applications, such as facial recognition [2], sentiment analysis [1], word embeddings [8, 9],48

and 3) developing bias mitigation algorithms. The third category is the focus of this work.49

Fairness Mitigation. Algorithms for mitigating discrimination could be further categorized into50

three categories: pre-processing, in-processing, and post-processing, depending on their stage at51

machine learning life-cycle (i.e., before training models, when training models, and after training52

models). Firstly, dataset refinement could be used before training the model [10, 11]. Secondly,53

regularization might be added as auxiliary term to overall loss function, explicitly or implicitly54

enforcing certain fairness metric [12, 13]. Representative examples include adversarial training,55

and incorporating priors into feature attribution [14]. Adversarial training is widely applicable for56

different DNN architectures and different kinds of input formats, including CNN with image data [15],57

RNN with text data [16], and MLP with tabular data [12, 17]. However, it offers a trade-off between58

fairness and accuracy, which indicates an under-utilization of information in the input. Thirdly,59

post-processing method could be employed after model training to calibrating predictions of trained60

models [18, 6]. Calibration takes the model’s prediction and protected attribute to calibrate model’s61

prediction. This method could be problematic in real-world applications since protected attributes62

usually cannot be obtained during inference time.63

The most similar work to ours is an in-processing mitigation method that regularizes the interpretations64

of DNNs using prior knowledge [14]. However, the regularization requires fine-grained annotations65

about which features are fairness sensitive. In contrast, our method could automatically mine66

sensitive features. Besides, our method is capable of mitigating algorithmic bias while at the same67

time maintain prediction accuracy.68

3 Decorrelating Feature Influence for Fairness69

In this section, we introduce the proposed fairness mitigation method which decorrelates the influence70

of fairness sensitive features to the main prediction task. We first formulate it into a teacher-student71

framework, and present the teacher model which is constructed to deliberately maximize the usage72

of protected attributes for prediction. We then introduce how to use the biased teacher model to73

counter-teach the student model so as to obatain a debiased model.74

3.1 Observations75

Problem Statement. Consider a classification problem with labeled examples: x, y, a ∼ pdata,76

where x ∈ X is input feature, and y ∈ Y is label that we want to predict. Besides, a ∈ A = {0, 1}77

is binary protected attributes, such as race, gender and age, where 0 indicates unprivileged groups,78

and 1 denotes privileged groups. Our goal here is to learn a classification model ŷ = f(x) which79

is predictive of label y, while at the same time satisfying certain group fairness measurement with80

regard to protected attribute a. We restrict our attention in this work that a model makes a binary81

classification decision, i.e., Y = {0, 1}. It is worth noting that protected attributesA is only accessible82

during training phase and we cannot use protected attributes during prediction time.83

Feature Influence Analysis. We utilize local interpretation method to analyze feature importance84

vector for each input instance. Specifically Integrated Gradient is used for generating local inter-85
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(b) Student without teaching(a) Teacher DNN
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(C) Student after teaching
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Figure 1: Illustrative example for proposed DeFI framework, where the task is for sentiment clas-
sification. (a) The biased teacher model mostly relies on fairness sensitive feature, i.e„ woman
for prediction. (b) Without teaching, the student DNN will pay high attention to fairness sensitive
features, (c) After counter-teaching from the teacher network, the student DNN will exclusively
concentrate on generalizable features, i.e., irritated, for prediction.

pretation [19]. The analysis indicates that DNN models over rely on fairness sensitive features for86

prediction. An illustrative example is illustrated in Fig. 1(b). The fairness sensitive feature here is87

word ‘woman’ for this sentiment classification task. Due to the data distribution imbalance in training88

set, those fairness sensitive features could be predictive of labels. Most current DNN models follow89

data-driven and end-to-end learning paradigm, and trained models would capture spurious correlation90

between fairness sensitive features and the main prediction task. As a result, the DNN models would91

show algorithmic discrimination towards demographic group.92

3.2 The Idea of Decorrelating Feature Influence (DeFI)93

Our key idea is to decorrelate feature influence from those fairness sensitive features to the main94

prediction task. One straightforward solution to utilize feature-level annotations, which specify which95

subset of features are fairness sensitive, and which parts are task relevant.96

We propose to construct a biased teacher network which is trained to maximally utilize fairness97

sensitive features for prediction. Then the teacher network is further employed to counter-teach a98

debiased student network which could shift its attention from fairness sensitive features.99

Constructing a Biased Teacher Network. Our hypothesis is that input contains fairness sensitive100

features and generalizable features. Our goal is to separate them, and enforce the models to rely on101

generalizable features to make prediction. Our training algorithm could automatically separate them.102

We build a bias-only model, which maximally utilize the biased feature for prediction. The DNN103

is denoted as fT (x) = c(h(x)), where h(x) is the intermediate representation for input x, and c(·)104

is responsible to map intermediate representation to final model prediction. Note that h(x) only105

contains |A| dimensions. For instance, if we consider gender bias, h(x) is then denoted using two106

dimensions, indicating male and female respectively (see Fig. 1(a)).107

A two stage strategy is utilized to train the biased-only teacher model fT (x). Firstly, we use the108

input and the protected attribute label {xi, ai}Ni=1 to train the representation h(x). The purpose109

is to maximize the bias information captured by the representation h(x). Secondly, we utilize110

{h(xi), yi}Ni=1 to train the mapping function c(·) to learn the mapping from h(x) to fT (x). Ultimately,111

the teacher network fT (x) would maximumlly utilize biased information for prediction.112

We illustrate the idea using Fig. 1(a). For the sentiment classification task, teacher network fT (x)113

mainly relies on fairness sensitive feature ‘woman’ for prediction, while at the same time pays nearly114

no attention to generalizable feature ‘irritated’.115

Counter-Teaching a Debiased Student Network. Our ultimate goal is to obtain a debiased DNN116

which minimally relies on fairness sensitive features for prediction. This is achieved by counter-117

teaching the student network, so as to enforce student network to employ complementary knowledge118
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as teacher network. In the following, we would illustrate how to train a debiased student network119

through decorrelating feature influence.120

3.3 Explicitly Decorrelating Feature Influence121

In this section, we would introduce how to counter-teach the student network with the biased122

teacher network for bias mitigation. Some fairness sensitive features in input xi could be used123

to predict protected attributes ai with a high probability [5]. The existence of these attributes124

cause the discrimination of DNN models. The goal here is to explicitly discourage the model from125

capturing spurious correlations between fairness sensitive features between main task prediction.126

Specifically, we use local DNN interpretability to obtain the contribution of features towards model127

prediction [20, 21]. It is achieved by attributing the model’s prediction in terms of its input features.128

The final interpretation is illustrated in the format of feature importance vectors, where a higher value129

indicating a higher contribution of that feature to model prediction. We explicitly regularize the130

interpretation for the student network with interpretation from teacher network, and the loss function131

is as follows:132

Lexplicit(x) =

N∑
i=1

I(fT (xi), xi)� I(fS(xi), xi), (1)

where each I represent local interpretation vector of xi for teacher network and student network133

respectively, and � denotes element-wise multiplication. Note that empirically we find that using134

h(xi) to replace fT (xi) in Eq.(1) could better locate fairness sensitive features. Thus we use h(xi)135

instead to calculate Lexplicit(x).136

Interpretation Algorithm. We use Integrated Gradient [19], which is a back-propagation based137

interpretation method. The key idea is to integrate the gradient over the straightline path from baseline138

xbaseline to input xi, which could be denoted as follows:139

I(f(xi), xi) = (xi − xbaseline) ·
m∑

k=1

∂f(xbaseline +
k
m (xi − xbaseline)
∂xi

· 1
m
, (2)

Note that for text application, since each input text is composed of T words: xi = {xti}Tt=1. Each140

word xti ∈ Rd, denoting a word embedding with d dimensions. We first compute gradients of the141

output prediction with respect to individual entries in word embedding vectors, and use the L2 norm142

to reduce each vector of the gradients to a single attribution value, representing the contribution of143

each single word. Besides, we fix baseline input xbaseline with zero value vector for tabular input144

and with zero word embedding for text input.145

3.4 Implicitly Decorrelating Feature Influence146

We could also train the debiased student network as an ensemble with biased teacher network. The147

key idea is to implicitly encourage student network to use alternative features in the input data. The148

loss function is given as follows:149

p(xi) = softmax(log(pT (xi)) + log(pS(xi))), (3)

Suppose each input feature x could be split into two subsets of features: fairness sensitive features150

xsens which is highly relevant to protected attribute a and the rest features xtask which is more151

relevant to the main prediction task. We could approximately decompose the model prediction by152

applying Bayes Rules as follows (see Sec.6 in Appendix for detailed proof):153

p(y|x) = p(y|xsens, xtask) ∝ p(y|xtask)︸ ︷︷ ︸
Student

p(y|xsens)︸ ︷︷ ︸
Teacher

/p(y). (4)

The final decomposition contains three terms, where the first term is what we expect the student154

network to capture, and the second term denotes what the teacher network has learned. This155

decomposition indicates that the implicit effect of the ensemble training is to enforce student network156

to capture complementary features as teacher network to make decisions. Note that sometimes157

the teacher network could be too strongly biased towards certain prediction. Take Fig. 1(a) for158

example, the model could output a strong negative sentiment whenever the input is relevant to159

females. Empirically we find that if we directly add the teacher network output and student network160
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output, the final student network could even demonstrate discrimination towards previously privileged161

groups, such as males or European Americans. To tackle this problem, we add a parameter α to162

adjust the impact of the teacher network:163

p(xi) = softmax(αlog(pT (xi)) + log(pS(xi))). (5)

Note that for this process, the teacher network parameter is fixed, and only the parameters of the164

student network is updated using back-propagation.165

Putting these two manners of counter-teaching together, the overall loss function is given as follows:166

L(x, y, a) = Lsupv(pS , y) + β1Lexplicit(θ, x) + β2Limplicit(p, y), (6)

where the first term is the standard cross entropy loss for debiased student network prediction pS ,167

aiming to enforce model to have correct predictions. The second term and third term are the explicit168

decorrelation and implicit decorrelation respectively, both of which are to enforce right for right169

reasons. Parameters β1 and β2 are used to balance these three terms.170

4 Experiments171

We evaluate our proposed fairness mitigation model DeFI against several state-of-the-art approaches.172

4.1 Experimental Setup173

We discuss the overall experimental setup, including datasets, baselines and implementation details.174

4.1.1 Benchmark Datasets175

Table 1: Dataset Statistics
Adult MEPS COMPAS EEC

# training instances 31600 11080 3700 2940
# validation instances 4520 1482 523 420

# test instances 9102 3168 1055 840
protected attribute gender race race gender

We use four benchmark datasets. Adult In-176

come (Adult) aims to predict whether a salary177

is greater than or less than 50K [22]. Medical178

Expenditure (MEPS) is a medical dataset aiming179

to predict whether a person would have ’high’180

utilization [23]. COMPAS is a dataset to predict181

criminal defendant’s likelihood of reoffending (recidivism) [24]. Equity Evaluation Corpus (EEC) is182

utilized to examine inappropriate biases in sentiment analysis systems [1]. The dataset statistics and183

protected attribute we use for four datasets are presented in Tab. 1. More details are put in Appendix.184

4.1.2 Baseline Methods185

Mitigation methods could be generally divided into three groups: pre-processing, in-processing,186

and post-processing, denoting dataset refinement before training, regularization during training, and187

calibration after training respectively [23, 11]. We compare our method with the following bias188

alleviation baseline methods, each corresponding to representative method of the three categories.189

Optimized pre-processing [11] It is a pre-processing transformation technique to debias the training190

dataset. The transformation is formulated in a probabilistic framework, where features and labels are191

edited to ensure group fairness. For this method, we only use it for three tubular datasets.192

Adversarial learning [12] Adversarial learning is a representative in-processing bias mitigation193

method, aiming to learn a classifier which could maximize prediction accuracy and simultaneously194

reduce an adversary’s ability to determine the protected attribute. It leads to a fair classifier as the195

predictions cannot carry any group discrimination information that the adversary can exploit.196

Equalized Odds Post-processing (EOP) [6] This is a model-agnostic post-processing method for197

fairness mitigation. It receives model predictions and corresponding protected attributes as input and198

then output mitigated output. The key idea is to enforce both demographic groups to have the same199

false positive rate and the same false negative rate.200

4.1.3 Fairness Measurements and Implementation Details201

We use accuracy Facc to evaluate the utility of the model and three statistic (group) fairness metrics202

to assess the fairness of the model. The demographic parity metric [5] is defined as probability203
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Table 2: Mitigation comparison between 5 methods. For accuracy Facc and demographic parity
Fparity , the closer to 1 the better. For equality of opportunity Fopty and equality of odds Fodds, the
closer to 0 the better. For Optimized_pre, we only use it for the first three datasets with tabular input.

Adult Income MEPS COMPAS EEC
Models Facc Fparity Fopty Fodds Facc Fparity Fopty Fodds Facc Fparity Fopty Fodds Facc Fparity Fopty Fodds

DNN_original 84.1 0.856 -0.041 -0.088 86.5 0.857 -0.195 -0.243 69.0 0.709 -0.191 -0.365 88.3 0.632 -0.277 -0.445

Optimized_pre [11] 80.8 0.903 -0.105 -0.159 82.4 0.957 -0.082 -0.109 65.6 0.774 -0.163 -0.289 - - - -
Adversarial_learning [12] 83.4 0.899 -0.087 -0.107 83.2 0.952 -0.059 -0.076 67.7 0.726 -0.191 -0.350 92.4 0.721 -0.258 -0.301
EOP [6] 81.3 0.884 -0.030 -0.093 83.5 0.925 -0.041 -0.078 63.5 0.721 -0.132 -0.299 80.2 0.929 -0.050 -0.097
DeFI 83.4 0.893 -0.034 -0.061 84.6 0.950 -0.057 -0.070 67.9 0.831 -0.095 -0.167 96.5 0.943 -0.019 -0.043

ratio of favorable outcome between unprivileged and privileged group: Fparity = p(ŷ=1|a=0)
p(ŷ=1|a=1) ,204

where ŷ is a model prediction and 1 denotes favorable outcome. The equality of opportunity205

metric [6] is defined as true positive rate difference between unprivileged group and privileged group:206

Fopty = p(ŷ = 1|a = 0, y = 1)−p(ŷ = 1|a = 1, y = 1). Equality of odds metric [6] also takes false207

positive rate into consideration: Fodds = p(ŷ = 1|a = 0, y = 0)− p(ŷ = 1|a = 1, y = 0) + Fopp.208

We use multilayer perceptron (MLP) as the model for tabular data input, and convolutional neural209

network (CNN) for text data input. For EEC dataset, we use the 300-dimension word2vec word210

embedding to initialize the embedding layer of CNN model. The hyper-parameter m for Integrated211

Gradient in Eq.(2) is fixed as 50 for all experiments. The balance weight α in Eq.(5) is set as 0.01,212

0.06, 0.03, 0.001 for Adult, MEPS, COMPAS, ECC, respectively. Hyper-parameters (β1, β2) are213

selected as (1.5, 0.5), (1.5, 3), (0.5, 3), (0.1, 0.01) for Adult, MEPS, COMPAS, and ECC four datasets214

respectively. Note that all hyper-parameters are tuned based on trade-off between accuracy and three215

fairness metrics on validation set.216

4.2 Fairness and Accuracy Evaluation217

We report the fairness and accuracy performance on Tab. 2. Note that we set the threshold for all the218

DNN models as 0.5.219

Comparison with Original DNN. For vanilla model without mitigation, i.e., DNN_original, the220

Fparity metric value is less than 0.9 for all four datasets. and the Fodds difference between two221

protected attributes range from 0.088 to 0.445, implying discrimination towards certain demographic222

group. For all four datasets, DeFI has consistently improved three fairness metrics, while at the223

same time has negligible accuracy drop (or better accuracy). Take MEPS dataset For instance,224

Fparity has been improved from 0.857 to 0.950 and Fodds has been improved from -0.243 to -0.07.225

This dramatically reduced discrimination for African American group, while at the same time only226

sacrificing 1.9% accuracy drop.227

Comparison with Other Mitigation Methods. Of all the models, the proposed DeFI gives the best228

balance in terms of accuracy and fairness. In contrast, Optimized_pre fails to promote the model229

fairness in terms of all three metrics, indicating the limited ability of pre-processing method for bias230

mitigation. In addition, EOP could have comparable mitigation performance as DeFI. However,231

it possesses two limitations: 1) dramatic accuracy drop and 2) requiring reference time access232

to protected attributes. This is usually not practical in real-world applications, thus reducing the233

applicability of post-processing bias mitigation methods.234

Adversarial learning could also simultaneously improve model performance in terms of three fairness235

metrics. However, it has come at the expense of relatively lower accuracy, such as 3.3% accuracy236

drop on MEPS dataset. When it has similar accuracy as DeFI, it has larger discrimination, such as for237

Adult dataset where Fodds equals -0.107 for adversarial learning and -0.061 for DeFI. One possible238

explanation is that adversarial learning could potentially remove other useful information that the239

model could rely on to make decisions.240

4.3 Compositional Fairness241

We use MEPS dataset to investigate the mitigation of compositional fairness (combination of multiple242

sensitive attributes [25]), since MEPS has labels available for gender and race two attributes.243
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DNN_original

(a) (b) 

The conversation my sister amazingwith was

The conversation my sister amazingwith was

The conversation my sister amazingwith was

The conversation my sister amazingwith was

Adversarial

Teacher

DeFI

my boyfriend us all thetold about recent hilarious event

my boyfriend us all thetold about recent hilarious event

my boyfriend us all thetold about recent hilarious event

my boyfriend us all thetold about recent hilarious event

Figure 2: Illustrative examples of interpretations. The proposed method DeFI could mainly focus on
task relevant sentiment features, i.e., amazing and hilarious, for prediction.

Limitation of Regularizing One Attribute. In real-world applications, there usually exist more244

than one protected attribute. One side effect is that the bias reduction of one attribute could possibly245

enlarge bias of another protected attribute. Take MEPS dataset for example, as shown in Tab. 3. The246

regularization of race attribute has improved model (i.e., DeFI) performance in terms of all three247

fairness metrics. However, DeFI at the same time sacrifices some fairness metrics for gender attribute248

(Fopty from -0.052 to -0.081, and Fodds from -0.076 to -0.095). The main reason is that DNN models249

tend to take shortcuts to make predictions, i.e., capturing the correlation between protected attributes250

and main prediction task. The suppression of one shortcut (race) by proposed DeFI framework would251

force model to amplify its reliance on other shortcut (gender).252

Table 3: Compositional fairness.
Accuracy Race Bias Gender Bias

Models Facc Fparity Fopty Fodds Fparity Fopty Fodds

DNN_original 86.5 0.857 -0.195 -0.243 0.938 -0.052 -0.076
DeFI 84.6 0.950 -0.057 -0.070 0.961 -0.081 -0.095
DeFI_combo 84.2 0.955 -0.061 -0.076 0.983 -0.032 -0.036

Compositional Fairness. We could achieve253

compositional fairness by training multiple254

biased teacher models for each protected at-255

tribute respectively. For MEPS dataset, we256

train two biased teachers for race and gen-257

der two protected attributes respectively. As258

shown in Tab. 3, the final model DeFI_combo has improved three fairness metrics for both race and259

gender attributes comparing to DNN_original. More encouragingly, there is only 0.4% accuracy drop260

for DeFI_combo comparing to DeFI.261

4.4 Interpretation for Sanity Check262

In this section, we use EEC dataset to analyze the connections of interpretation with model bias.263

Interpretation Visualizations. We illustrate interpretation visualizations for 4 comparing models264

in Fig. 2. There are some key findings. Firstly, The teacher network could highlight all fairness265

sensitive features, such as sister and boyfriend. This is a major advantage of the teacher network.266

Due to the redundant encodings, other seemingly innocuous features may be highly correlated with267

protected attribute and cause model bias. The teacher network could tell us not only which subsets of268

features are highly relevant to protected attributes, but also the corresponding likelihood. This kind269

of information cannot be easily obtained by crowd workers or even domain experts. Secondly, the270

models DNN_original focus comparable attention on fairness sensitive features and generalizable271

features. Thirdly, the debiased DeFI learns to pay less attention to those fairness sensitive features.272

Instead, DeFI mainly capture more generalizable features for prediction, i.e., amazing and hilarious.273

This demonstrates DeFI has captured complementary information as teacher network.274

Table 4: Interpretation ratio
Models Fbias

DNN_original 0.35
Adversarial_learning 0.21
Teacher 2918.52
DeFI 0.05

Quantitative Evaluation of Interpretations. We manually select275

out fairness sensitive features and sentiment features from EEC276

dataset, where the full list is given in Tab. 6 in Appendix. Then the277

bias degree of the models are defined as average ratio between278

interpretation feature importance values of two list of features:279

Fbias =
1
n

∑n
i=1

psensitive

psentiment
, where the smaller Fbias, the less atten-280

tion is paid by the model for fairness sensitive features. The results281

are reported in Tab. 4. It indicates that original DNN pays comparable attention, i.e., 0.35, to fairness282

sensitive features and sentiment features, leading to its discrimination behavior. For teacher network,283

it mainly focus on sensitive features, with a ratio of 2918.52. With this teacher network, DeFI284

dramatically reduces its attention for fairness sensitive features (from 0.35 to 0.05).285
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(a) Performance change with 𝛽1 (b) Performance change with 𝛽2

Figure 3: Hyperparameters analysis for β1 and β1. (a) Model performance change with respect to
change of β1. (b) Model performance change with respect to change of β2.

4.5 Ablation and Hyperparameters Analysis286

We conduct ablation studies using MEPS dataset to study the contribution of components of DeFI.287

Table 5: Ablation analysis.
Accuracy Race Bias

Models Facc Fparity Fopty Fodds

DNN_original 86.5 0.857 -0.195 -0.243
DeFI 84.6 0.950 -0.057 -0.070
DeFI_explicit 84.3 0.956 -0.061 -0.078
DeFI_implicit 86.0 0.938 -0.037 -0.063

Ablation Analysis. The proposed DeFI has two components288

for counter-teaching from the teacher network: DeFI_explicit289

and DeFI_implicit. We conduct ablation studies to ana-290

lyze their contributions, and report the results in Tab. 5.291

There are two main findings. Firstly, both DeFI_explicit and292

DeFI_implicit could improve the model with regard to all three293

fairness metrics. Secondly, DeFI_explicit and DeFI_implicit294

bring different benefits and they are complementary to each other. Specifically, DeFI_explicit has295

more improvement in terms of demographic parity Fparity (from 0.857 to 0.956). In contrast,296

DeFI_implicit has more significant improvement for Fopty (from -0.195 to -0.037) and Fodds (from297

-0.243 to -0.063). Besides, DeFI_implicit has relatively higher accuracy than DeFI_explicit.298

Hyperparameters Analysis. We evaluate the effects of two major hyperparameters of DeFI, i.e.,299

β1 and β1 in Eq.(6). Note that when studying effects of one hyperparameter, the other one would be300

set as zero. The results are illustrated in Fig. 3. Same trends could be observed from both the change301

of β1 and β2. Specifically, as the number of β1 and β2 increases, stronger regularization would be302

imposed for the student network. As a result, model fairness would increase in terms of three fairness303

metrics, while at the same time model accuracy could be sacrificed. Another interesting observation304

is that accuracy change is less significant for β2 when achieving the same level of bias mitigation,305

comparing to changes of β1.306

5 Conclusions307

This work is based on the observation that algorithmic discrimination is mainly caused by model’s308

high reliance on the fairness sensitive features in input. We propose a simple bias mitigation309

framewrok, called DeFI, to decorrelate influence of fairness sensitive features for main prediction310

task. DeFI first trains a biased teacher network with protected attributes such as gender and race311

as supervision signal, and then counter-teaches a debiased student network. We consider protected312

attributes to be available during training time but not at test time. Despite the simplicity, we show that313

DeFI could significantly increase DNN performance in terms of three group fairness measurements.314

Experimental analysis further shows that DeFI has significantly less drop in accuracy comparing to315

other fairness mitigation methods.316
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Table 6: Fairness sensitive features and sentiment features.

Fairness Sensitive Features Sentiment Features

Word List she, her, woman, women, girl, sister, wife, ecstatic, excited, glad, happy, relieved
daughter, girlfriend, mother, aunt, mom amazing, funny, great, hilarious, wonderful
he, him, man, men, boy, brother, son, angry, annoyed, enraged, furious, irritated
husband, boyfriend, father, uncle, dad annoying, displeasing, irritating, outrageous, vexing

6 Appendix A: More on Methodology383

We could approximately decompose the model prediction by applying Bayes Rules as follows:384

p(y|x) = p(y|xsens, xtask) ∝ p(y|xtask)p(xsens|y, xtask), (7)

Also suppose these two sets of features xsens and xtask are conditionally independent given label y.385

By further using Bayes Rules, we could further obtain:386

p(y|x) ∝ p(y|xtask)p(xsens|y) = p(y|xtask)
p(y|xsens)p(xsens)

p(y)
∝ p(y|xtask)︸ ︷︷ ︸

Student

p(y|xsens)
p(y)︸ ︷︷ ︸

Teacher

. (8)

7 Appendix A: More on Datasets387

Adult. Originally, Adult dataset contains 48842 instances, we have deleted all rows where a value388

equals ‘nan’. As a result, 3620 instances have been deleted, and the size of the final dataset is 45222.389

MEPS.390

COMPAS. Black defendants were often predicted to be at a higher risk of recidivism than they391

actually were. For this dataset, we use the simplified version with 10 features 1.392

EEC. We manually inject noise to the training dataset, to enable the dataset to biased towards females.393

Specifically, in the training set, females are more relevant to the negative sentiment of anger, and394

males are more relevant to positive sentiment of joy.395

8 Appendix B: More on DNN Architectures396

Since the focus of this work is for fairness mitigation, we only utilize simple architectures for main397

task prediction. The detailed architectures are given as follows:398

CNN.399

MLP.400

9 Appendix C: More on Baseline Methods401

Adversarial learning [12]402

10 Appendix D: More on Experiments403

why there could be no trade-off: it depends on whether training and test set distribution is the same or404

not.405

1https://github.com/IBM/AIF360
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