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Background

B | Classification

- Classification

«» ldentifying the categories of unlabeled instances
m computer vision, handwriting recognition, speech recognition, document classification

abc G

Difficulties of this problem

= Quality of labeled instances
= Expensive costs of collecting labels

} Active Learning ¢
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Procedures of Active Learning Performance of Active Learning

is» Common procedures in the cycle.
= Label prediction based on current semi-supervised classifier.
= Measure estimation based on query selection criterion.
= Query labeling by experts.
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Semi-Supervised Classifier (learn from labeled and unlabeled data)
<> Graph-based Classifier

Illustration:
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Input Samples

Graph Construction + Label Propagation

Advantages:
Easy for explanation; Analytic solution ...
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Semi-Supervised Classifier

<> Graph-based Classifier
Formulation:
minimize YF(f; — yill* +7 ZU W
Optimal Solution:
F=[1+A20-wW)] !

2 + 2tr[FT(I1 — WF]

2
1
———F;
1]

Procedure:
Label Propagation
matrix inversion with a
cubic cost O(N?3)

Graph Construction | @ | \‘\’\\

adjacency matrix with a
quadratic cost O (N2).
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Query Selection Criterion

@ A. Expected Error Reduction (EER)
Definition: choose the instance with the largest error reduction = tradeoff on error reduction
Formulation:
argmax, E(f) — E(fYki), wherek € 1:N,i € 1: C.

current estimated error T I expected generalization error
) 4
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Query Selection Criterion

@ A. Expected Error Reduction (EER)
Definition: choose the instance with the largest error reduction = tradeoff on error reduction.

Formulation:
argmax, E(f) — E(fYki), wherek € 1:N,i € 1: C.
. current estimated error expected generalization error
Procedure: ™, T I .

At each iteration,
For each unlabeled instance
Suppose this instance is labeled, and re-train the classifier.
Re-infer the soft labels exactly for hard labels.
Estimate the expected error.
End
Select the instance whose expected error reduction is largest.
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Query Selection Criterion

@ A. Expected Error Reduction (EER)
Definition: choose the instance with the largest error reduction = tradeoff on error reduction.

Formulation:
argmax, E(f) — E(fYki), wherek € 1:N,i € 1: C.
. current estimated error expected generalization error
Procedure: ™, T I A

At each iteration,
For each unlabeled instance
Suppose this instance is labeled, and re-train the classifier.
Re-infer the soft labels exactly for hard labels.
Estimate the expected error.
End
Select the instance whose expected error reduction is largest.

Cost: @

O(N + tirqin) X N, where tq-qin 1S the time cost of training the classifier, e.g., for many SSL classifier.
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o Query Selection Criterion

=
@ B. Uncertainty Sampling
= Definition: choose the instance with the largest uncertainty.
= Procedure:

At each iteration,
=omeach-dhlabeled-instanee avoid model retraining.
Infer the labels of unlabeled instances.

Estimate the uncertainty.
FEvies
Select the instance with the largest uncertainty.

= Analysis:
Cost: reduce the time cost to O(/V) without re-training. I\_W @
Effectiveness: ignore the influence of labels; outliers may be selected.
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o Limitations

Semi-supervised Classifier

= A. Graph-based Classifier

Large time cost of graph construction and mode training.
Query Selection Criterion Scalable
= A. Expected Error Reduction —  Active
(Perform well at either tuning decision boundaries or discovering new classes) Leal"n Ing

Large time cost of model re-training and label re-inference.

= B. Uncertainty Sampling b
Ignore the influence of labels on the classifier and other instances.
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- An alternative to select high-quality queries efficiently.
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7 Motivations

o Efficient Semi-Supervised Classifier
= Reduce the time cost of graph-based learning.
= Keep a high classification accuracy.

O Scalable Query Selection Criterion
= Cut down the time cost of query selection.
= Keep the high quality of selected instances.
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7 Motivations

o Efficient Semi-Supervised Classifier
= Cut down the time cost of graph-based learning.
= Keep a high classification accuracy.
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o Efficient Semi-Supervised Classifier

& Hierarchical Anchor Graph

o datapoints ® sampled anchors

full graph

from Full-Graph to Anchor Graph

anchor graph

ll. Efficient Semi-Supervised Classifier

Sizes are

L, (anchor lay.

““'

Ly(data layer)

o« datapointin £,
« anchorin £,

— inter-layer edges
between £, and £,

/
generally
— reduce >/
e 10 con™ La . « W
\S\J@% g

e datapointin £,

Lo : anchors in £, (b = 1) 2 L
— inter-layer edges between
neighboring layers, £,_, &

L

from Anchor Graph to Hierarchical Anchor Graph
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o Efficient Semi-Supervised Classifier

#» Learning with Hierarchical Anchor Graph Regularization (HAGR)

. 2 A
= Formulation:  Xi—||Z{'A —yil|” +5 X7 Wi (Zi'A - 2 A)%.

- Label smoothing (Laplacian matrix) based on the finest
anchors with W = Z01'Z0.1,
» Label inference (hierarchically) from the coarsest

anchors with ZH = 701712  zh-1h
. -1
= Solution: A = (zf"z" + L) zl''y,
- ‘ e datapointin £,
= Time cost: reduced to O(NNf + Np). lo "5 anchors i 36

Y 4 ’ — inter-layer edges between

neighboring layers, £,_; &
Ly
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7 Motivations

O Scalable Query Selection Criterion
= Cut down the computational cost of query selection.
= Keeping a satisfying performance on the quality of selected instances.
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B lll. Scalable Query Selection

o Scalable Query Selection
Approximated Error Reduction (AER)

& Definition:
= an approximated estimation of expected error reduction with limited computations.
Formulation: average estimated error
1-¢ T
argmaxy, Iq X ( (‘”) °
Itq)

where| 1, is the expected impactjover all instances, ¢ is the hyper-parameter and

[_ @ js the approximated ratlo]between the error reduction and the expected impact over nearby instances.
lig) )

5 Interpretation:

expected error reduction

m error reduction =expected impact X
expected Impact

. . . expected error reduction\ 1 €
m approximated error reduction =expected impact X

expected Impact nearby datapoints

= Setting € as average estimated error within (0, 1) = Adaptive tradeoff between two terms with the error decreasing.
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B lll. Scalable Query Selection

o Scalable Query Selection

Approximated Error Reduction (AER)

Formulation:
1—¢
argmaX I X (I (q)> 4 € SAL
(q)

where I, is the expected impact over all mstances Ljs the approximated ratio between the error reduction and the
Lig)

expected impact over nearby instances, and ¢ is the tradeoff parameter.

¢ Keypoints:

Candidate set /1)) Nearby datapoints of the candidate Xg

Erg)
Ig)

Expected impact over all instances Approximated ratio over nearby datapoints
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o Scalable Query Selection
Approximated Error Reduction (AER)

¢ Keypoints: i Details:

@ Candidate set Hierarchical expansion of candidates

» iner anchor . . .
V @ fneranch Hierarchical Expansion

coarser anchor

1. Initialize candidates with all the coarsest

anchors.
2. Once x4 is labeled, the connected finer

anchors whose nearest coarser anchor is X,
1s added into the candidate set.
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B lll. Scalable Query Selection

o Scalable Query Selection
Approximated Error Reduction (AER)

¢ Keypoints: i Details:

%@

@ Nearby datapoints of x, Hierarchical assignment of nearby datapoints

Hierarchical Assignment

the coarser candidates
requires more nearby
datapoints to estimate
their approximated ratio
effectively.

X|ql, %G Once the current anchor x, is
®

labeled, its nearby datapoints (q)

, are re-assigned to the nearest finer
® datapoint
® finer anchor anchors x lql1 and x lql, -

coarse anchor
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o Scalable Query Selection
Approximated Error Reduction (AER)

¢ Keypoints: i Details:

HAGR: I, = I, f, | ZH (Ao — A)|| Fast Computation Time Cost:

@ _ @ Only soft labels are required.
Q Expected impact Fast computation of the expected impact
over all instances

o>

For N, candidates, the time
cost of expected impact esti-
mation is O(NZN, + N7 +
NpN,C + NEC + N, C?)

5 2
|24 -2
= trace|[(A*Yar — A)A(AYar — A)]

_ (7HT7H “H(uT HT
A=(z8'z +m) (z8' Y, +Z8 v) ~ O(NZN.)
A — 7H zH M=z""zZH + IL & matrix inversion lemma h

remaining time cost to\\ direct matrix operations !
data size is avoide



Scalable Active Learning
B

o Scalable Query Selection
Approximated Error Reduction (AER)

¢ Keypoints:

Details:

lll. Scalable Query Selection

% Approximated ratio Fast estimation of the approximated ratio

%xpected impact over (q)

Iq

Fast Estimation

Time Cost:

lig) =
u:degree of the impact overfl

arby datapoints.

expected error reduction Oveiyy
N ~ a
Erigy = iy nit (i fi) = nZ €(fiu f)

n:degree of the expected error will be reduced.

= (1 + p) x 2
Iq

For N, candidates,
the time cost of
approximated ratio
estimation is O(NC).

144
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lll. Scalable Query Selection

o Scalable Query Selection

Approximated Error Reduction (AER)

1-¢
. ; ; Er
[ Objective formulation: argmaxy I X (%) ,q € Sap
‘ [ DO0OS
g ) —
Final formulation: l argmaqulfl X £<q)1_8, q € Sy uncertainty over expected impact
. ? ) nearby instances over all instances
average estimated error T A T

< Pros: @/

-

AER enables an efficient estimation of error reduction without re-inferring labels of instances.

The expected impact can be calculated for all candidates via direct matrix operations rather than
multiple iterations.

Apart from the similar time cost to that of the uncertainty sampling, the remaining time cost of
our AER-based approach is independent of data sizes during the query selection.

AER focuses on global impact first and pays attention to local uncertainty later, which provides
an opportunity to achieve comparable or even higher accuracies than the EER-based approach.
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Experiment and Conclusion
B 1. Experiment

o Experiment
o, Efficient Semi-Supervised Learning on Hierarchical Anchor Graph

Classification error rates (%) on USPS-Train
(7,291 samples) with { = 100 labeled samples. m = 1000
for four versions of AGR. The running time of k-means
clustering is 7.65 seconds.

Method Error Rate  Running Time
(%) (seconds)

INN 20.1541.80 0.12

LGC with 6NN graph 194227 403.0:

GFHF with 6NN graph

random AnchorGraphReg”  11.15+0.77 2.55

random AnchorGraphReg 10.30£0.25 3.85

AnchorGraphReg" 7.4040.59 10.20
AnchorGraphReg 6.561+0.55 16.57
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29
o Experiment

|. Experiment

~+ Efficient Semi-Supervised Learning on Hierarchical Anchor Graph

Classification accuracies (%) with different number of labeled samples on the MNIST8M dataset.

# of labeled INN LSVM AGR EAGR HAGR HAG
samples / -30 000\ -30,000 -30,000-5,000 -3%00—30,000- 000

100 60.16 £ 1.96 | 59.67 & 2.19 § 89.87 £ 1.78 | 90.27 £0.18 | 89.46 £1.24 i 91.36 = 0.7(‘\
200 68.66 £ 1.29 | 64.46 = 2.37[]| 91.15+0.59 |}91.76 & 0.57 | 90.85 £ 0.50 92.46 + 0.42
300 72.78 £0.81 | 66.79 £ 2.25 | 92.21 £0.51 | 92.37 £ 0.51 | 91.66 £ 0.42 93.05 + 0.37
400 75.33£0.60 | 68.33£1.97 | 9247044 | P2.73 £ 0.38 | 92.16 £ 0.36 93.43 £ 0.37
500 77.24 £0.55 | 70.65 £ 1.49 | 92.70 £ 0.41 | P3.05£0.29 | 92.50 £ 0.29 93.78 £ 0.24
600 78.58+0.54 | 72.64+1.36] | 92.80 £ 0.34 | [93.17+£0.27 | 92.64 + 0.26 93.90 £ 0.27
700 79.87 £0.70 | 73.80 £ 1.27\| 93.12 £ 0.31 (f93.41 £0.30 | 92.92 £ 0.28 94.10 £ 0.25
800 81.02+0.50 | 73.87+1.18 | 93.19+0.23 J 93.561+0.15 | 93.06 £0.16 | \94.21 +0.15
900 81.76 £0.49 | 73.97 £ 0.96 93.63 £0.21 | 93.18 =0.26 \94.28 £+ 0.16
1000 82.51 £0.42 | 76.95+1.13 93.79+£0.15 | 93.37+£0.16

The comparison of time costs (in seconds) of AGR, EAGR, and HAGR methods on the MNIST8M dataset.

Dataset WKEER -30,00 'WEAGR—SO 000 | HAGR-30,000-500

HAGR-300,000-30,000-5,000 )

MNISTS 665.0

66260 |

104.97

. 137.54 4

[
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7N N\

Dataset | Qu  Qpwu Qemc  Qer / Qeer\/QaEr
ImageNet | 2.15  10.05 4.19 7.61 90.73 9.35
MNISTEM | 4.22 14.47 1097  12.19 \ 198.73 16.15}

ImageNet vMMST&M Slnce AER payS attentlon tO
| ’ ' | ' ' | ‘ local region based on local

[0 ] P e e o .

uncertainty, it can leads to
better performance than EER.
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7 Conclusion

Semi-supervised classifier on hierarchical anchor graph.

Query selection criterion with approximated error reduction.

Scalable active learning for efficient classification.
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