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ABSTRACT

We study the problem of active learning for multi-class clas-
sification on large-scale datasets. In this setting, the existing
active learning approaches built upon uncertainty measures
are ineffective for discovering unknown regions, and those
based on expected error reduction are inefficient owing to
their huge time costs. To overcome the above issues, this pa-
per proposes a novel query selection criterion called approx-
imated error reduction (AER). In AER, the error reduction
of each candidate is estimated based on an expected impact
over all datapoints and an approximated ratio between the
error reduction and the impact over its nearby datapoints. In
particular, we utilize hierarchical anchor graphs to construct
the candidate set as well as the nearby datapoint sets of these
candidates. The benefit of this strategy is that it enables a hi-
erarchical expansion of candidates with the increase of labels,
and allows us to further accelerate the AER estimation. We
finally introduce AER into an efficient semi-supervised clas-
sifier for scalable active learning. Experiments on publicly
available datasets with the sizes varying from thousands to
millions demonstrate the effectiveness of our approach.
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1 INTRODUCTION

With the explosive growth of datasets, supervised learning
and semi-supervised learning have been broadly used in many
multi-class classification tasks, such as speech recognition [6],
image classification [4], and data mining [5]. The former di-
rectly employs labeled data to train its classifier, while the
latter further exploits the prior knowledge from unlabeled
data to improve the classification.

To obtain satisfactory performance, classifiers require high-
quality labeled data. Active learning that selects valuable
queries to label has been studied to address this problem [9],
[18]. The uncertainty-based sampling is the simplest query s-
election criterion [12]. However, as the methods based on this
criterion consider each datapoint independently, they ignore
the accuracy improvement on other datapoints after labeling
the selected query. Although several density-weighting ap-
proaches were developed to relieve this issue [14], [25], they
are still insufficiently effective to discover unknown regions,
especially at the early phase of query selection.

An alternative active learning criterion called expected
error reduction (EER) was therefore proposed. In general,
EER makes a tradeoff on the reduction in generalization
errors achieved by either labeling an unknown region or tun-
ing decision boundaries under its current classifier, which
leads to impressive performance [1], [29]. Nevertheless, EER
brings a huge time cost owing to its error reduction esti-
mation. That is, for each datapoint, the classifier has to be
re-optimized with its possible labels and the labels of other
datapoints need to be re-inferred to calculate its expected
generalization error. As a result, even scalable classifiers are
employed [16], [23], [28], the EER-based query selection is
still inefficient for active learning on large-scale datasets.

To overcome the above issues, this paper proposes a nov-
el criterion called approximated error reduction (AER). Ac-
cording to AER, we estimate the error reduction of a candi-
date based on an expected impact over all datapoints, and
an approximated ratio between the error reduction and the
impact over its nearby datapoints. Meanwhile, a hierarchi-
cal anchor graph [23] is utilized to build the candidate set as
well as the nearby datapoint sets of these candidates. Of note,
the construction of the hierarchical anchor graph is efficient,
and the anchor sets and the datapoint set on this graph es-
tablish coarse-to-fine coverings of the data distribution. As
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a consequence, it allows us to expand the candidate set hier-
archically with the increase of labeled queries, which can fur-
ther accelerate the AER estimation. Finally, by introducing
the proposed AER criterion into a scalable semi-supervised
classifier, we obtain an efficient and effective active learn-
ing approach for query selection on large-scale datasets. The
promising results on benchmark datasets highlight the supe-
rior performance of our approach1.

The main contributions of our work are as follows.

• We propose a novel AER criterion for query selection.
Compared with EER, it enables an efficient estima-
tion of the error reduction without re-inferring labels
of massive datapoints. We also utilize a hierarchical an-
chor graph to construct a small candidate set, which
allows us to further accelerate the AER estimation.

• We introduce the AER criterion into a scalable semi-
supervised classifier for active learning. Meanwhile, we
develop a fast algorithm to calculate the expected im-
pact over all datapoints for all candidates, which can
be performed via direct matrix operations rather than
multiple iterations.

• We show that, apart from the similar time cost to that
of the uncertainty-based sampling, the remaining time
cost of our AER-based approach is independent of da-
ta sizes during the query selection. Furthermore, our
AER-based approach can still achieve comparable or
even higher accuracies than the EER-based approach.
The experimental results on different types of datasets
demonstrate the effectiveness of our approach.

The rest of this paper is organized as follows. In Section
2, we review the related work on active learning. In Sec-
tion 3, we introduce the preliminaries of hierarchical anchor
graphs and an efficient semi-supervised classifier. In Section
4, we propose the AER criterion and use it for scalable active
learning. Section 5 validates the strengths of our approach on
different-size datasets, and Section 6 concludes this paper.

2 RELATED WORK

Recent years have witnessed a number of studies on active
learning for searching valuable queries and reducing manu-
al labeling costs [15], [25]. In particular, discriminative ac-
tive learning has obtained satisfactory performance in many
real-world applications. Different from representative active
learning that only considers the feature spaces of data distri-
butions [2], [26], these approaches are prediction dependent
and can query informative instances to facilitate the improve-
ment of the classifier for a higher accuracy.

Uncertainty-based sampling is the simplest and most wide-
ly used discriminative criterion [13]. The methods built upon
this criterion generally select the query that is the least cer-
tain, where different uncertainty measures can be used, such
as entropy and ℓp loss. In particular, Joshi et al. [10] pro-
posed to estimate the uncertainty by merely using the prob-
abilities of the best and the second best classes. As these

1 Both the datasets and codes are available at http://github.com/
fuweijie/AER

approaches are prone to outliers, some methods combining
representativeness were also developed [9], [14], [21], [25]. For
example, Settles et al. [21] proposed to select queries based
on a density-weighting uncertainty with the cosine similari-
ty. Li et al. [14] proposed to employ the mutual information
rather than the marginal density. However, the former faces
a challenge of combing two different measures, and the lat-
ter has to estimate the mutual information with a cubic time
cost with respect to data sizes. Recently, Dasarathy et al. [7]
proposed to select uncertain queries based on the structure
of a graph, which is inefficient when the number of the dat-
apoints along decision boundaries is large.

Instead of only considering the classifiers based on current
labels, one can further exploit re-optimized classifiers by giv-
ing possible labels on unlabeled datapoints. EER therefore
has become an effective query selection criterion by directly
minimizing the generalization error [1], [29]. Nevertheless, it
also leads to the most expensive query selection approaches,
as classifiers have to be re-optimized with each possible label
and the labels of massive datapoints need to be re-inferred.
Although Zhu et al. [29] proposed a novel method to update
the label matrix of unlabeled data, and Aodha et al. [1] pre-
sented a hierarchical subquery approach for the EER estima-
tion, they are still impractical for large-size datasets, owing
to the inevitable huge time cost of classifier initialization.

Another criterion that considers possible labels is expect-
ed model change, which selects the query with the greatest
expected change on the parameters of a classifier [20]. Com-
pared with EER, it does not require the label re-inference
for datapoints, which remarkably reduces time costs. When
a classifier is trained with gradient-based optimization, it is
equal to select the query that creates the largest change on
the gradient of the objective function [3]. However, this crite-
rion ignores the importance of the parameters corresponding
to different features, which in turn reduces its effectiveness.

In short, the above criteria either do not consider the error
reduction over all datapoints, or face a huge time cost in es-
timating error reduction. In contrast, our AER criterion can
obtain an efficient error reduction estimation, which brings
significant advantages for scalable active learning.

3 PRELIMINARIES

To better present our work, we introduce the preliminaries
of hierarchical anchor graphs and a scalable semi-supervised
classifier. Some important notations are listed in Table 1.

3.1 Hierarchical Anchor Graph

We first introduce hierarchical anchor graphs [23]. An illus-
trative example of graphs is shown in Fig.1

Let X0∈RN0×d indicate the set of datapoints, and each
Xb∈RNb×d (b=1, . . . , h) denote a small set of anchors (land-
mark datapoints) that roughly cover data distributions [16].
A hierarchical anchor graph can be constructed based on the
following constraints: (1). Fine-to-Coarse Coverings. The set-
s of anchors share the same feature space of the datapoint
set, and their sizes are gradually reduced with N1>. . .>Nh.
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Table 1: Notations and Definitions

Notation Definition

X0 The set of datapoints with the dimension d.
N0 The number of datapoints.
h The number of anchor sets.
Xb The b-th set of anchors (h≥b≥1).

Nb The number of anchors in Xb (h≥b≥1).
C The number of classes.

Zb−1,b The inter-set adjacency matrix between Xb−1 and Xb.
ZH The cascaded inter-set adjacency matrix.

⌈·⌉ The nearest points in the connected coarser set.
A The soft label matrix of the coarsest anchor set.

A+ŷqr The updated matrix with an extra label r on xq .

F The soft label matrix of the datapoint set.
YL The class indicator matrix on labeled datapoints.
Ē The average estimated error based on labeled data.

SAL The set of candidates for active learning.

Nq The number of candidates in SAL.
Iq The expected impact over all datapoints of xq .
⟨q⟩ The indices of the nearby datapoints of xq .
N⟨q⟩ The number of the nearby datapoints of xq .

Er⟨q⟩ The error reduction over the nearby datapoints of xq .

E(E+ŷqr
⟨q⟩ ) The generalization error over the nearby datapoints.

I⟨q⟩ The impact over the nearby datapoints of xq .

⌊q⌋ The set of points whose nearest anchor in the
connected coarser set is xq .

These anchor sets bring fine-to-coarse coverings of the da-
ta distribution. (2). Pyramidal Structure. Let G denote a
multiple-set pyramidal graph. The original datapoints in X0

locate at the bottom layer of the pyramid, and the remain-
ing layers are all composed of fine-to-coarse anchor sets with
X1,. . .,Xh. (3). Inter-set Adjacency. The datapoint set and
all anchor sets are linked up to a complete graph with h set-
s of inter-set adjacency edges between the neighboring sets,
such as Zb−1,b∈RNb−1×Nb between Xb−1 and Xb.

In the above graph model, we denote anchors in X1 and Xh

as the finest anchors and the coarsest anchors, respectively.
In particular, if the graph only contains one anchor set (h=1),
we denote anchors in X1 as the coarsest anchors for conve-
nience. Besides, we use ’N1-N2-. . . -Nh-anchor-graph’ to in-
dicate a hierarchical anchor graph built upon h anchor sets
with N1,N2,. . . ,Nh anchors in different anchor sets. More
details of the setting of anchor sets can be found in [23].

The remaining issues of the graph construction involve t-
wo aspects, including the generation of anchor sets and the
inter-set adjacency estimation between the neighboring sets.
To obtain an anchor set, we can perform a fast clustering al-
gorithm on the datapoint set with a predetermined number
of centers [16]. Here we briefly describe the adjacency esti-
mation. Specifically, for each Zb−1,b∈RNb−1×Nb , its weights
can be determined by the kernel regression [16]:

Zb−1,b
ij =

Kσ(xi,xj)∑
j′∈⌈i⌉ Kσ(xi,xj′)

, ∀j ∈ ⌈i⌉, (1)

(datapoint set)et)

datapoint in 

inter-set edges between neighboring sets

po

inter-set edges between neig

anchors in ( 1)

Figure 1: An example of hierarchical anchor graphs.

where σ is the bandwidth of the Gaussian kernel, xi is the
i-th point in Xb−1, and ⌈i⌉ is the set of indices of its s near-
est anchors in the connected coarser set Xb. For large-scale
datasets, we can speed up the weight estimation with the
approximate nearest neighbor search [17], which reduces the
cost of the graph construction to O(N0logN1).

3.2 Scalable Semi-Supervised Learning

Efficient semi-supervised classifiers have been proposed for
large-scale classification [16], [23], [28]. Here we introduce a
scalable one built upon the above graph, which has shown
its effectiveness on many multi-class classification tasks [23].

Let D={(x1, y1), . . . , (xNL , yNL), . . . ,xN0} be the dataset
where the first NL datapoints are labeled from C distinct
classes. Let A denote the soft label matrix on the anchors in
Xh that needs to be optimized. Based on the inter-set adja-
cency in the hierarchical anchor graph, the soft label matrix
on datapoints (F) can be inferred in a hierarchical manner:
F=ZHA∈RN0×C , where ZH=Z0,1(. . . (Zh−1,h))∈RN0×Nh is
the cascaded inter-set matrix between X0 and Xh. Let Λ

be a diagonal matrix with Λjj=
∑N0

i=1 Z
0,1
ij , and rL=ZHT

ZH

−ZHT
Z0,1Λ−1Z0,1TZH be the reduced Laplacian matrix on

the graph. Besides, denote YL=[y1; . . . ;yNL ]∈R
NL×C as the

class indicator matrix of the labeled data, where yir=1 if xi

belongs to the class r, and yir=0 otherwise. Let ZH
L be the

labeled part of ZH, and λ be the parameter that weighs the
fitting constraint against the smoothness constraint in man-
ifold regularization. Hierarchial anchor graph regularization
(HAGR) obtains an optimal solution of A in a closed form:

A = (ZH
L

T
ZH

L + λrL)
−1

ZH
L

T
YL ∈ RNh×C (2)

with a time cost of O(Nh
3), where Nh is the size of Xh.

Finally, HAGR employs the soft labels of the anchors in
Xh to infer the label of any unlabeled datapoint in X0:

argmaxr∈{1,...,C}
ZH

i· ×A·r

πr
, i = NL + 1, . . . , N0, (3)

where A·r is the r-th column of A, and πr=1TZHA·r is the
normalization factor [16]. As we have obtained ZH, this label
inference can be performed with a time cost of O(N0NhC).
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4 PROPOSED APPROACH

In Section 4.1, we propose a novel query selection criterion
called approximated error reduction (AER). We also intro-
duce its implementing details based on hierarchical anchor
graphs for scalable active learning. In Section 4.2, we present
our AER-based approach. Section 4.3 analyzes its time cost,
and Section 4.4 makes a comparison to other criteria.

4.1 Approximated Error Reduction

In AER, to obtain valuable queries, the error reduction of
a candidate is estimated based on an expected impact over
all datapoints and an approximated ratio between the error
reduction and the impact over its nearby datapoints.

Suppose fi is the soft label assignment of xi based on

current labeled datapoints, and f̂i is the hard indicator vector

with f̂ir=1 if r=argmaxrfir and f̂ir=0 otherwise. Let SAL

be the candidate set. For each candidate xq∈SAL, we first
calculate its expected impact over all datapoints:

Iq =
C∑

r=1

fqr

N0∑
i=1

ℓ(fi, f
+ŷqr
i ), (4)

where f
+ŷqr
i s are the re-inferred soft labels based on the cur-

rent labeled datapoints and xq with the label r, and ℓ denotes
the l2 loss. As we can see, Iq calculates the change on the
soft labels of all datapoints by assuming new labels on xq.

Then, we consider the ratio between the error reduction
and the impact of xq. Instead of an exact ratio built upon
all datapoints, AER only requires an approximated one for
xq based on its error reduction and impact over nearby dat-
apoints. Let ⟨q⟩ be the indices of the nearby datapoints with
the size of N⟨q⟩. The approximated ratio can be calculated:

Er⟨q⟩
I⟨q⟩

=
E⟨q⟩ − E(E+ŷqr

⟨q⟩ )

I⟨q⟩
, (5)

where
E⟨q⟩ =

∑N⟨q⟩
i=1 ℓ(fi, f̂i),

I⟨q⟩ =
∑C

r=1 fqr
∑N⟨q⟩

i=1 ℓ(fi, f
+ŷqr
i ),

E(E+ŷqr
⟨q⟩ ) =

∑C
r=1 fqr

∑N⟨q⟩
i=1 ℓ(f

+ŷqr
i , f̂

+ŷqr
i ),

are the accumulated estimated error, the impact and the gen-
eralization error over these nearby datapoints, respectively.

As
Er⟨q⟩
I⟨q⟩

is estimated based on nearby datapoints, its confi-

dence is lower than that built upon all datapoints. Therefore,

instead of applying the same confidence to Iq and
Er⟨q⟩
I⟨q⟩

, the

objective function of the AER criterion is formulated as

argmaxxq
Iq × (

Er⟨q⟩
I⟨q⟩

)
1−ϵ

, xq ∈ SAL, (6)

where ϵ∈(0:1) aims to control the confidence of
Er⟨q⟩
I⟨q⟩

. Of

note, the above formulation leads to the following conclusion.

Proposition.1: Suppose
Er⟨q⟩
I⟨q⟩

>0 and Iq>0. For Eq.6

with ϵ∈(0, 1), the influence of
Er⟨q⟩
I⟨q⟩

on the objective value is

reduced, and that of Iq is relatively increased.

finer anchor 

coarser anchor 

 

 

 

Figure 2: An example of S⌊q⌋ that denotes the set
of finer anchors whose nearest connected coarser an-
chor is xq. For simplification, only a tiny fraction of
inter-set edges of the graph are shown.

We leave the proof of the proposition to the Appendix.
Besides, when ϵ is closer to 1, the reduction will be larger.

For example, if ϵ=1, the influence of
Er⟨q⟩
I⟨q⟩

will be zero.

In this paper, we simply set ϵ to the average estimated er-

ror as ϵ=Ē= 1
N0

∑N0
i=1 ℓ(fi, f̂i). The idea behind is that, when

the error is large, the classification result is often instable.
As a result, labeled candidates can affect more datapoints
rather than their nearby ones, which reduces the confidence
of the approximated ratio. Later we show its effectiveness
via the experimental comparison to another strategy [14].

In short, for each xq in SAL, if its expected impact over all

datapoints (Iq) and its ratio over nearby datapoints (
Er⟨q⟩
I⟨q⟩

)

can be efficiently obtained, we can perform scalable active
learning via Eq.6. Below we introduce these implementing
details based on hierarchical anchor graphs.

4.1.1 Hierarchical Expansion of Candidates ( SAL)

We first introduce a hierarchical expansion technique to con-
struct the candidate set by employing both the coarse-to-fine
anchors and datapoints on a hierarchical anchor graph.

Instead of using all unlabeled datapoints as candidates,
we initialize a candidate set with the coarsest anchors in Xh:

SAL ⇐ Xh. (7)

As the size of Xh is much smaller than that of the unlabeled
data, it can significantly reduce the time cost of the AER
estimation. Besides, this candidate set is sufficiently repre-
sentative for query selection at the early stage.

With the increase of labels, a finer candidate set is needed
to tune decision boundaries. Let S⌊q⌋={x⌊q⌋1 , . . .} be the set
of finer points whose nearest connected coarser anchor is xq.
After xq∈SAL is labeled, we expand candidates with S⌊q⌋:

SAL ⇐ (SAL ⊖ xq) ∪ S⌊q⌋, (8)

where SAL⊖xq denotes the operation that removes xq from
SAL. Different from employing all connected finer points, we
alleviate the rapid expansion of the candidate set based on a
few candidates in S⌊q⌋. An illustrative example is shown in
Fig.2, where only x⌊q⌋1 , x⌊q⌋2 are added into the candidate
set, while the other connected finer points of xq are ignored.
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Figure 3: An example of the hierarchical assignment
of nearby datapoints. In this example, the query xq is
labeled and x⌊q⌋1 , x⌊q⌋2 are added into the candidate
set. We only assign the datapoints in ⟨q⟩ to their
approximate nearest candidate x⌊q⌋1 or x⌊q⌋2 .

4.1.2 Hierarchical Assignment of Nearby Datapoints (⟨q⟩)
Then, we consider the assignment of the nearby datapoints.
Similar to the candidate expansion, we build the nearby dat-
apoint sets for all candidates in a hierarchical manner.

Specifically, we first build nearby sets for the candidates
in Xh by assigning all datapoints in X0 to their approximate
nearest candidates. Denoting ⟨q⟩ as the nearby datapoints
of the q-th candidate, we have:{

⟨1⟩ ∪ ⟨2⟩ ∪ . . . = X0,
⟨1⟩ ∩ ⟨2⟩ ∩ . . . = ⊘.

When a candidate xq∈SAL is labeled and S⌊q⌋ is added
into the candidate set, we re-build nearby sets for these new
candidates in S⌊q⌋ in a similar way based on the nearby dat-
apoints of xq (See Fig.3). As a consequence, we obtain:{

⟨⌊q⌋1⟩ ∪ ⟨⌊q⌋2⟩ ∪ . . . = ⟨q⟩,
⟨⌊q⌋1⟩ ∩ ⟨⌊q⌋2⟩ ∩ . . . = ⊘.

In general, for each finer candidate, the number of its n-
earby datapoints is smaller than those of coarser ones.

4.1.3 Fast Computation of the Expected Impact( Iq)

Here, we focus on the computation of the expected impact
over all datapoints. Let A+ŷqr denote the updated classifier
with an extra label r on xq. Taking HAGR as an example
with F=ZHA, we can therefore obtain:

Iq =

C∑
r=1

fqr∥ ZH(A+ŷqr −A) ∥2F. (9)

To calculate Eq.9, we focus on its Frobenius norm:

trace((A+ŷqr −A)
T
∆(A+ŷqr −A)), (10)

where ∆=ZHT
ZH. As ∆ only needs to be calculated once,

the time cost here is much smaller than that of the gener-
alization error in EER, where the labels of all datapoints
must be incrementally re-inferred. However, as the time cost
of each A+ŷqr scales as O(N3

h), for Nq candidates within C
classes, the total cost of O(N3

hNqC) can still be expensive.
The remaining challenge is how to compute Eq.10 for all

candidates efficiently. To solve this issue, we present an ef-
ficient method for the impact estimation in the Appendix,
which only involves fast matrix operations. In this way, the
time cost can be drastically reduced to O(N2

hNq).

4.1.4 Fast Estimation of the Approximated Ratio (
Er⟨q⟩
I⟨q⟩

)

Now, we estimate the ratio between the error reduction and
the impact over nearby datapoints. A naive solution is to cal-
culate the two involved terms directly. However, it is practi-
cally inefficient to incrementally calculate them for all candi-
dates or store all the relevant matrices in the memory, such

as ∆⟨q⟩=ZH
⟨q⟩

T
ZH

⟨q⟩ for the impact estimation over nearby

datapoints, where ZH
⟨q⟩ denotes the nearby part of xq in ZH.

Below we introduce an alternative to accelerate this step.
First, for the candidate xq, we approximate its expected im-
pact over its nearby datapoints (I⟨q⟩) based on its expected
impact over all datapoints (Iq):

I⟨q⟩ ≈
Iq

1 + µ
, (11)

in which the auxiliary parameter µ≥0 describes the degree
that the impact overflows the nearby datapoints.

Then we consider the error reduction over nearby data-
points (Er⟨q⟩). Instead of the repeated calculation, we eval-
uate it based on the estimated errors of nearby datapoints:

Er⟨q⟩ =
N⟨q⟩∑
i=1

ηi × ℓ(fi, f̂i), i ∈ ⟨q⟩, (12)

where the auxiliary parameter ηi∈[0:1]. It describes the de-
gree that the expected error of the i-th nearby datapoint
will be reduced from its current estimated error. Since these
parameters of the nearby datapoints of each candidate ηis
tend to be similar, we can approximate Eq.12 with the accu-
mulated error over these nearby datapoints (E⟨q⟩) in Eq.5:

Er⟨q⟩ ≈ η ×
N⟨q⟩∑
i=1

ℓ(fi, f̂i) = η × E⟨q⟩. (13)

Note that the auxiliary parameters µ and η can be dif-
ferent for each candidate, which may involve complex rela-
tionships with respect to the uncertainty over their nearby
datapoints. However, such an evaluation is difficult to be
described. To circumvent this problem, in this work, we pro-
pose to apply the same settings for all candidates. Our rea-
soning here is as follows: as the candidate set is expanded
hierarchically, we expect that the influence on the nearby
datapoints of one candidate will not be much larger than
that of the other candidates. With this simplification, based
on Eq.11 and Eq.13, we can directly obtain the ratio in Eq.6:

Er⟨q⟩
I⟨q⟩

= (η × E⟨q⟩)/(
Iq

1 + µ
) = η(1 + µ)×

E⟨q⟩

Iq
. (14)

4.2 Scalable Active Learning

Now we present the AER-based scalable active learning.
Given a dataset D with NL labeled datapoints, we first

construct a hierarchical anchor graph with Eq.1 and build a
candidate set SAL via Eq.7. We initialize the classifier based
on all datapoints with a few labels via Eq.2, and infer the
labels of unlabeled datapoints with Eq.3.

Then for each candidate xq∈SAL, we compute its expected
impact over all datapoints (Iq) based on the proposed fast
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Table 2: Our Approach for Scalable Active Learning

Input: datapoint set X0, anchor sets Xbs, the parameters s
and λ, the number of labeled datapoints T .

# Initialization
1. Construct a hierarchical anchor graph with Eq.1.
2. Build a set of candidates SAL with Eq.7 and find the

nearby datapoint sets of these candidates.
3. Initialize a scalable classifier, such as HAGR.

# Efficient Query Selection
Repeat the following steps until T queries are labeled:

1. Obtain the estimated value in Eq.16 for each candidate based
on the proposed fast algorithm and the labels of datapoints.

2. Ask an oracle for the label of the selected query.
3. Re-train the classifier via Eq.2 and re-infer the labels of

datapoints via Eq.3.
4. Expand the candidate set SAL via Eq.8.

Output: The classifier and the labels of all datapoints.

algorithm mentioned in Section 4.1.3. We employ its nearby
datapoints to estimate its approximated ratio between the

error reduction and the impact (
Er⟨q⟩
I⟨q⟩

). We substitute these

two terms of xq into Eq.6 and obtain its approximated error
reduction over all datapoints (Erq):

Erq = Iq × (
Er⟨q⟩
I⟨q⟩

)
1−ϵ

= Iq × (η(1 + µ)× E⟨q⟩
Iq

)
1−ϵ

= Iϵ
q × E⟨q⟩

1−ϵ × (η(1 + µ))1−ϵ, (15)

where ϵ=Ē . As (η(1+µ))1−ϵ in Eq.15 is a constant for all
candidates, it can be removed without changing the solution
of the optimization problem. Therefore, according to AER,
the following query can be selected:

argmaxxq
Iϵ
q × E⟨q⟩

1−ϵ,xq ∈ SAL. (16)

Once the query is labeled, we re-infer the labels of data-
points and update candidates via Eq.8. In our experiments,
we conduct the query selection until T queries are labeled.

The overall active learning approach is given in Table 2.

4.3 Computational Cost Analysis

Below we analyze the time cost of the proposed approach.
During the initialization step, the time cost of graph con-

struction is O(N0logN1). The total cost of computing ZH,
∆, and rL scales as O(N0Nhs) with the sparse matrix multi-
plication [27]. We optimize HAGR with a cost of O(N3

h). In
short, the time cost here scales as O(N0logN1+N0Nhs+N3

h).
Then, in each iteration of query selection, the following

time costs are required. Firstly, we infer the labels of dat-
apoints in O(N0NhC), and calculate their estimated errors
in O(N0C). Secondly, to estimate the error reduction for Nq

candidates, we compute their expected impact values over
all datapoints in O(N2

hNq) and the approximated ratios in
O(N0+Nq). Finally, we select the query based on AER in
O(Nq). As we have Nq≥Nh, the time cost here can be sim-
plified as O(N0NhC+N2

hNq+N3
h)≈O(N0NhC+N2

hNq).

As we can see, apart from the similar time cost to that
of the uncertainty-based sampling, namely O(N0NhC), the
remaining time cost of our AER-based query selection is in-
dependent of data sizes, which highlights its superiority for
large-scale active learning.

4.4 Discussion on AER

In this section, we discuss the relationships and differences
between the proposed AER criterion and other criteria.

4.4.1 Comparison to Density-Weighting Uncertainty

This learning criterion [21] selects the datapoint that is both
uncertain and representative, which can be formulated as

argmaxxq
d(xq)× ℓNSE(fq), (17)

where d(xq)=
∑NU

i=1simcos(xq,xi) denotes the cosine similari-

ty of xq over NU unlabeled datapoints, and ℓNSE(fq) denotes
the N-best sequence entropy [10]. Eq.17 can be rewritten as

argmaxxq
d(xq)×

ℓNSE(fq)

simcos(xq,xq)
, (18)

where simcos(xq,xq)=1. Similar to Eq.6, the first term eval-
uates the similarity of xq over massive datapoints, and the
second term is the approximated ratio between the uncer-
tainty reduction and the similarity of xq itself. Compared
with AER, Eq.18 estimates the ratio based on a single data-
point, which can be insufficiently effective.

4.4.2 Comparison to Expected Model Change

This learning criterion [3] selects the datapoint that brings
the greatest expected change on the parameters of a classifier.
For HAGR, its query selection can be formulated as

argmaxxq

C∑
r=1

fqr∥ A+ŷqr −A ∥2F. (19)

The change of HAGR is equal to the change on the soft labels
of the coarsest anchors, which is far from the error reduction
over massive datapoints. In contrast, our impact in Eq.9 cal-
culates the change on the soft labels of all datapoints, which
narrows the above gap by introducing data distributions.

4.4.3 Comparison to Expected Error Reduction

In EER, if labeling the candidate xq only reduces the errors
of its nearby datapoints ⟨q⟩, we have Erq=Er⟨q⟩. Below we
show that when µ=0 and η=1, our AER value is equal to
EER, which is independent of the average estimated error Ē .

Since η=1, we obtain E⟨q⟩=Er⟨q⟩ via Eq.13. As all errors
of nearby datapoints are changed to 0, we obtain I⟨q⟩=Er⟨q⟩.
Then as µ=0, we have Iq=I⟨q⟩ via Eq.11. By substituting
the above results into Eq.15, we finally obtain:

Erq = Iϵ
q × E⟨q⟩

1−ϵ × 1 = Er⟨q⟩ϵ × Er⟨q⟩1−ϵ = Er⟨q⟩. (20)

When η ̸=1, and µ̸=0, AER first focuses on the expected
impact over all datapoints for rapid accuracy improvements,
and then adaptively pays attention to the error reduction
over a few nearby datapoints for tuning decision boundaries.
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Table 3: Details of the Datasets in Our Experiments.

Num of Num of Num of
Dataset instances categories dimensions

Alphadigits 1,404 36 320
Semeion 1,593 10 256
USPS 7,291 10 256

ISOLET 7,797 26 617
Letter 20,000 26 16
MNIST 70,000 10 784
ImageNet 256,091 200 512

MNIST8M 8,100,000 10 86

5 EXPERIMENTS

In this section, we investigate the effectiveness of our AER
criterion. The experiments are implemented on a PC with
i7-5820K CPU @ 3.30GHz and 64G RAM. We use the fol-
lowing datasets with varying sizes, including Alphadigits2,
Semeion3, ISOLET4, Letter3, USPS5, MNIST6, ImageNet7,
and MNIST8M[23]. Some statistics of them are listed in Ta-
ble 3. For convenience, we regard the first six as medium-size
datasets, and the last two as large-size datasets.

5.1 Comparison to Other Methods

We first compare the proposed AER-based approach with
the methods built upon several state-of-the-art active learn-
ing criteria. For scalability and fair comparisons, we use HA-
GR as the classifier for all active learners, which has shown
its impressive performance on semi-supervised classification
tasks. The methods for comparison are as follows:

1. Random Sampling: This method randomly selects queries
for labeling. We denote it as ’QR’.

2. Maximal Uncertainty: This method selects queries based
on the 2-best sequence entropy [10]. We denote it as ’QU’.

3. Maximal Density-Weighting Uncertainty: This method
selects queries based on the density-weighting entropy with
the cosine similarity [21]. We denote it as ’QDWU’

4. Maximal Expected Model Change: It selects queries
based on the expected change on the parameters of a classi-
fier [3]. This method is denoted as ’QEMC’.

5. Maximal Expected Impact: This method selects queries
based on the proposed expected impact over all datapoints.
We denote it as ’QEI’.

6. Maximal EER: This method selects queries with the
EER evaluation [29]. We denote it as ’QEER’.

7. Maximal AER: This proposed method chooses queries
based AER. It is denoted as ’QAER’.

Note that besides QAER, the candidate sets in QDWU,
QEMC, QEI are also expended in a hierarchical manner for

2available at http://www.cs.nyu.edu/∼roweis/data.html
3available at http://archive.ics.uci.edu/ml
4available at http://www.cad.zju.edu.cn/home/dengcai/
5available at http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets
6available at http://yann.lecun.com/exdb/mnist
7We randomly select 200 classes from ImageNet [19] and build a sub-
set with 256,091 images. We extract their 4,096-D CNN features via
AlexNet [11] and perform PCA to reduce the dimension to 512.
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Figure 4: Average performance curves with respect
to the number of labels on medium-size datasets.

efficient implementation (see Section 4.1.1). Meanwhile, as
the huge time cost of the EER estimation, we only employ
the coarsest anchors as the candidates for QEER. We enlarge
the numbers of anchor sets with the increase of datapoints,
where the sizes of these anchor sets follow the proportion sug-
gested in hierarchical anchor graph models [16], [23], [24].

5.1.1 On Medium-size Datasets

For Alphadigits, Semeion, ISOLET, and Letter, we follow
[24] and build 500-anchor-graphs. We build 2,000-500-anchor-
graphs and 5,000-1,250-anchor-graphs for USPS and MNIST,
respectively. We empirically set λ to 0.1. For active learning,
only 2 instances are randomly sampled as the initial labeled
data. Based on 20 trials, the average accuracy curves are
displayed in Fig.4, and the time costs are listed in Table 4.
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Table 4: Comparison of average time costs (in sec-
onds per query) on medium-size datasets.

Dataset QU QDWU QEMC QEI QEER QAER

Alphadigits 0.01 0.03 0.04 0.04 1.80 0.04
Semeion 0.01 0.01 0.02 0.02 0.67 0.02
USPS 0.01 0.02 0.02 0.02 2.45 0.02

ISOLET 0.02 0.04 0.03 0.04 7.94 0.05

Letter 0.03 0.10 0.11 0.17 13.81 0.20
MNIST 0.04 0.18 0.15 0.17 30.16 0.21
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Figure 5: Average accuracy curves with respect to
the number of labels on large-size datasets.

Table 5: Comparison of average time costs (in sec-
onds per query) on large-size datasets.

Dataset QU QDWU QEMC QEI QEER QAER

ImageNet 2.15 10.05 4.19 7.61 90.73 9.35
MNIST8M 4.22 14.47 10.97 12.19 198.73 16.15

From these results, we can obtain the following observa-
tions. Firstly, compared with QR, QU obtains higher accu-
racies on Semeion, USPS, and MNIST, and receives com-
parable or even worse performance on Alphadigits, ISOLET,
and Letter. The reason behind is that, the uncertainty-based
sampling is insufficiently effective to discover queries that ac-
tually belong to new classes, especially when the number of
classes is large. Secondly, QDWU performs worse than QU in
most cases, which indicates that directly combing the densi-
ty and the entropy is not generally suitable for all classifiers.
Thirdly, as QEMC only considers the changes on the param-
eters of the classifier, it obtains worse performance than QR

with the increase of labels. In contrast, by introducing the
data distribution, QEI can achieve much higher accuracies,
which is consistent with the theoretical analysis in Section
4.4.2. Fourthly, QAER obtains comparable or even better per-
formance than QEER, and its performance is more consistent
to that of QEER than others. This result empirically demon-
strates the effectiveness of our AER criterion on the error
reduction estimation. Finally, when considering both the ef-
ficiency and the effectiveness, QAER highlights its strengths
over other compared methods.

5.1.2 On Large-size Datasets

We also conduct experiments on ImageNet and MNIST8M
with 100,000-10,000-2,500-anchor-graphs. We empirically set
λ to 0.01 in HAGR. By repeating the similar process, we
report the average classification accuracies over 10 trials in
Fig.5 and list the time costs in Table 5.

From these results, the following observations can be made.
Firstly, similar to the pervious results, QEI outperforms QEMC

by giving consideration to data distributions. Secondly, com-
pared with QEI and QEER, QAER can obtain higher accura-
cies after a few iterations of query selection. It means that
introducing uncertainty into active learning criteria will be
beneficial to tune decision boundaries. Thirdly, when taking
account into the time cost in Table 5, we further confirm the
superior performance of QAER for scalable active learning.

5.2 Effectiveness Analysis

5.2.1 On the Formulation of AER

In AER, ϵ is fixed to Ē to control the confidence of the ap-
proximated ratio. To demonstrate the effectiveness, we com-
pare QAER with the following two intermediate versions:

(1). QAER,Ada: This method follows [14] and sets ϵ to differ-
ent values, e.g., {0, 0.1, . . . , 1} to obtain several sub-queries,
and then refines the best query from them based on EER.

(2). QAER,TopK: This method first selects top K(K=10)
datapoints based on AER as sub-queries and then refines
the best query from them based on EER.

We conduct experiments on the USPS dataset with 500-
125-anchor-graphs. The average accuracy curves over 20 trias
of these three methods are displayed in Fig.6(a).

From this figure, we observe that QAER can obtain com-
parable performance to QAER,Ada, which requires the extra
time cost of query refining. The reason behind is that, al-
though the setting of ϵ in QAER,Ada is more flexible, most
of them are useless. For example, at initial stages, the sub-
queries with small expected impact values over all datapoints
will not lead to rapid improvements. With the error reduc-
ing, the sub-queries with large impact values may not im-
prove decision boundaries. In contrast, QAER prefers the dat-
apoints with large impact values at first and those near de-
cision boundaries with the increase of labels. That is, AER
adaptively weighs the impact over all datapoints against the
accumulated uncertainty over nearby datapoints. Meanwhile,
we observe that although QAER performs slightly worse than
QAER,TopK at the early stages, it obtains comparable accura-
cies with the increase of labels. This result also implies that,
we may further improve the performance of QAER with an
extra query refining step, where the time cost is still much
smaller than that of the direct EER-based query selection.

5.2.2 On the Hierarchical Candidate Expansion

We finally investigate the effectiveness of the candidate ex-
pansion based on hierarchical anchor graphs. We compare
QAER with QAER-, which is a simplified QAER without the
candidate expansion via Eq.8. The average accuracy curves
of these two methods are shown in Fig.6(c).
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Figure 6: Average accuracy curves with respect to
the number of labeled instances on USPS.

From this figure, we observe that the accuracies of QAER

and QAER- are similar at initial stages. It means that, al-
though QAER expands the candidate set from the beginning,
it will not immediately fall into finer candidates for local ac-
curacy improvements. Once the performance becomes better
with the increase of labeled data, QAER will pay attention
to these finer candidates and bring higher classification accu-
racies. This result further demonstrates the effectiveness of
introducing finer candidates for tuning decision boundaries.

6 CONCLUSIONS

This paper proposed a novel query selection criterion called
approximated error reduction (AER). Different from other
criteria, AER estimates the error reduction of a datapoint
based on its expected impact over all datapoints and its ap-
proximated ratio between the error reduction and the impact
over its nearby datapoints. Meanwhile, AER employs hierar-
chical anchor graphs to expand a small candidate set with
the increase of labels, which further accelerates its estima-
tion. Benefiting from AER, we can obtain an efficient estima-
tion of the error reduction without incrementally re-inferring
labels of massive datapoints. We introduced AER into an ef-
ficient semi-supervised classifier for scalable active learning.
The experiments on publicly available datasets demonstrat-
ed both the efficiency and the effectiveness of our approach.

It is worthwhile to note that since the supervised and
semi-supervised classifiers in the literature [8], [22], [24], [28]
have similar solutions to HAGR in their model optimiza-
tion, our future work includes the integration of AER with
them, where the proposed fast impact estimation can be gen-
eralized. In these works, all AER-based approaches are sup-
posed to be much fater than EER, as the repeatedly label
re-inference is not required in AER.

APPENDIXES

A. Proof of Proposition 1

Let f(α, β) denote f1(α)×f2(β), where f1(α)=α and f2(β)=

(β)1−ϵ are two mapping functions on the variables α, β>0

with ϵ∈(0,1), respectively. Denote rα=
α1
α2

, and r′α=
f1(α1)
f1(α2)

as

the original ratio and the mapped ratio on α, respective-

ly, and rβ=
β1
β2

, and r′β=
f2(β1)
f2(β2)

as the original ratio and the

mapped ratio on β, respectively. We have (1). rβ>r′β>1(rβ<
r′β<1) if rβ>1(rβ<1). (2). r′α=rα. That is, the mapped r′β is
closer to 1 than rβ , and the mapped r′α is same to rα, name-
ly, the difference of two βs corresponding to two instances
is reduced via the mapping function f2, and that of two αs
is kept via f1. As a consequence, it leads to the reduction
of the influence of β on the objective value, and relatively
increases the influence of α. According to Eq.6, let α denote
the expected impact Iq, and β be the approximated ratio
Er⟨q⟩
I⟨q⟩

, which completes the proof.

B. Fast Impact Estimation

Below we presents the derivation of the fast impact estima-
tion used in Section 4.1.3.

Let zHq be the cascaded inter-set adjacency vector of xq,
and ŷqr be its class indicator vector where only the r-th el-
ement is 1. To obtain Eq.10, the traces of the following terms

are needed:A+ŷqrT
∆A+ŷqr ,A+ŷqrT

∆A, andAT∆A, where

A+ŷqr = (zHq
T
zHq + ZH

L

T
ZH

L + λrL)
−1

(zHq
T
ŷqr + ZH

L

T
YL).

Suppose M=(ZH
L
T
ZH

L + λrL), then A+ŷqr=(zHq
T
zHq +M)

−1

(zHq
T
ŷqr + ZH

L
T
YL). By matrix inversion, we can therefore

calculate A+ŷqr as

(M−1 −
M−1zHq z

H
q
T
M−1

zHq
TM−1zHq + 1

)(zHq
T
ŷqr + ZH

L

T
YL)

Let M̂=M−1, αq=zHq M̂zHq
T
, and βq=

1
1+αq

. We can sub-

stitute the above results into the trace of the first term
(A+ŷqrT

∆A+ŷqr ) and obtain it:

trace[(ŷT
qrz

H
q +YL

TZH
L )(I− βqM̂zHq z

H
q

T
)M̂∆

M̂(I− βqz
H
q z

H
q

T
M̂)(zHq

T
ŷqr + ZH

L

T
YL)]

=trace[ŷT
qr(z

H
q M̂∆M̂zHq

T
)ŷqr] + 2trace[ŷT

qr(z
H
q M̂∆M̂ZH

L

T
YL)]

− 2βqtrace[ŷ
T
qr(z

H
q M̂∆M̂zHq

T
)(zHq MzHq

T
)ŷqr]

− 2βqtrace[ŷ
T
qr(z

H
q M̂∆M̂zHq

T
)(zHq MZH

L

T
YL)]

− 2βqtrace[ŷ
T
qr(z

H
q M̂zHq

T
)(zHq M̂∆M̂ZH

L

T
YL)]

+ β2
q trace[(ŷ

T
qr(z

H
q M̂zHq

T
)(zHq M̂∆M̂zHq

T
)(zHq MzHq

T
)ŷqr]

+ 2β2
q trace[ŷ

T
qr(z

H
q M̂zHq

T
)(zHq M̂∆M̂zHq

T
)(zHq MZH

L

T
YL)]

+ trace[(YT
LZ

H
LM̂)∆(M̂ZH

L

T
YL)]

− 2βqtrace[(Y
T
LZ

H
LM̂∆M̂zHq

T
)(zHq MZH

L

T
YL)]

+ β2
q trace[(Y

T
LZ

H
LM̂zHq

T
)(zHq M̂∆M̂zHq

T
)(zHq M̂ZH

L

T
YL)].

Suppose γq=zHq (M̂∆M̂)zHq
T
, φq=zHq A, ϕq=zHq M̂∆A, and

δ=trace(AT∆A), where A=M̂ZH
L
T
YL. Besides, we obtain

trace(ŷT
qrγqŷqr)=γq, and trace(ŷT

qrϕq)=(ϕq)r, where (·)r is
the r-th element of the inside vector. By substituting them
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into the above equation, we obtain the trace of the first term:

δ + (1− 2αqβq + α2
qβ

2
q )γq + (2αqβ

2
qγq − 2βqγq)(φq)r+

(2− 2αqβq)(ϕq)r − 2βqϕq
Tφq + β2

qγqφq
Tφq,

Similarly, the trace of the second term can be obtained:

trace[A∆M̂(I− βqz
H
q z

H
q

T
M̂)(zHq

T
ŷqr + ZH

L

T
YL)]

=trace[(A∆M̂zHq
T
)ŷqr] + trace(A∆A)

− trace[βq(A∆M̂zHq )(z
H
q

T
M̂zHq

T
)ŷqr]

− trace[βq(A∆M̂zHq )(z
H
q

T
M̂ZH

L

T
ŷL)]

=δ + (1− αqβq)(ϕq)r − βqφq
Tϕq.

We briefly analyze the above time cost. First, for Nq candi-
dates, the total time cost of αqs is O(N2

hNq), and the follow-
ing cost for βq is O(Nq). Then for these candidates, the time
cost of γqs is O(N3

h+N2
hNq), and that of all ϕqs, φqs, ϕq

Tφqs

and φq
Tφqs is O(NhNqC+N2

hC+NqC
2). Therefore, for Nq

candidates, the time cost of their expected impact estimation
is O(N2

hNq+N3
h+NhNqC+N2

hC+NqC
2). Since Nq≥Nh≫C,

it can be simplified asO(N2
hNq). Of note, these impact values

can be computed via direct matrix operations rather than
multiple iterations.
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