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Abstract—Over the last decade, deep neural networks (DNNs) are regarded as black-box methods, and their decisions are criticized
for the lack of explainability. Existing attempts based on local explanations offer each input a visual saliency map, where the supporting
features that contribute to the decision are emphasized with high relevance scores. In this paper, we improve the saliency map based
on differentiated explanations, of which the saliency map not only distinguishes the supporting features from backgrounds but also
shows the different degrees of importance of the various parts within the supporting features. To do this, we propose to learn a
differentiated relevance estimator called DRE, where a carefully-designed distribution controller is introduced to guide the relevance
scores towards right-skewed distributions. DRE can be directly optimized under pure classification losses, enabling higher faithfulness
of explanations and avoiding non-trivial hyper-parameter tuning. The experimental results on three real-world datasets demonstrate
that our differentiated explanations significantly improve the faithfulness with high explainability. Our code and trained models are
available at https://github.com/fuweijie/DRE.
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1 INTRODUCTION

Deep neural networks (DNNs) have achieved high accura-
cies in a wide range of fields, such as image recognition [11],
and natural language processing [10]. However, they often
lack meaningful explanations about how specific decisions
are made and are regarded as black-box methods. In par-
ticular, the explanation should take both faithfulness and
explainability into account. The faithfulness estimates the
fidelity between the explanation and the decision behavior
of original DNNs, and the explainability quantifies how
easy it is to understand the explanation for humans.

Local explanation methods are proposed to address this
issue. They provide users an understandable rationale for
each specific decision with a visual saliency map, where the
relevance score of each feature indicates its contribution to
the decision. For high faithfulness, the supporting features
contributing to increase the probability of the target class are
supposed to obtain high scores, and the remaining features
regarded as backgrounds are expected to get almost zero
scores. In particular, gradient-based explanations compute
the partial derivative of the class probability with respect
to input features via back-propagation [2], [20]. Besides,
perturbation-based explanations aim to find the smallest re-
gion, which allows a confident decision directly or prevents
a confident decision once being removed [8]. By applying
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Fig. 1. Comparison of different saliency maps: (a) The proposed DRE,
(b) Vanilla Gradient [20], (c) Grad-CAM++ [2], (d) Mask Generator [4],
and (e) Extreme Perturbation [7].

various ad hoc constraints on the region and lowering the
contributions of intricate supporting features, they maintain
faithfulness and improve explainability.

To provide better explanations of the decisions, differ-
entiated saliency maps are preferred. That is, the strong
supporting features that significantly contribute to the probability
of the target class are highlighted with very high scores, the weak
supporting features that slowly increase the probability obtain
lower scores, and the other features regarded as the background
have almost zero scores. Based on the differentiated explana-
tions, users not only can locate the whole set of supporting
features but also figure out which parts of them are more
important than the others. For illustration, two examples
are shown in Fig.1(a), which not only capture the shapes of
the whole animals but also provide detailed insights that
their heads contribute more than the remaining parts.

However, the existing local methods fail to produce the
differentiated explanations. For example, instead of directly
addressing the basic question ”what makes this image
belong to the target class”, the gradient-based methods
answer the question ”what makes this instance more or
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Fig. 2. The saliency maps obtained from the right-skewed distribution
controller to the left-skewed distribution controller, illustrating the benefit
of the right-skewed distribution for human-friendly explanations.

less similar to the target class” [16], leading to noisy results
within the same region (Fig.1(b)). [2], [19] propose to create
saliency maps by combining the gradients with the corre-
sponding feature maps at high-level layers. However, they
ignore the fine-grained information within low-level layers
and bring coarse saliency maps (Fig.1(c)). In addition, the
perturbation-based methods are formulated to highlight the
supporting features directly, which ignore the different de-
grees of importance of these features [4] (Fig.1(d)). Recently,
some explanation methods introduce soft ad hoc constraints
and data augmentation techniques to improve their saliency
maps [6], [24]. Nevertheless, they either significantly in-
crease the number of iterations for optimizing each saliency
map, or require users to carefully tune hyper-parameters to
trade-off the constraints and the classification loss, leading
to non-negligible costs. Although [7] introduces extreme
perturbations with hard constraints to ease the setting of
hyper-parameters, its saliency maps ignore some parts of
the supporting features and still lose the differentiation on
the detected supporting features (Fig.1(e)).

In this paper, we propose to learn a Differentiated Rel-
evance Estimator (DRE) to construct differentiated expla-
nations. Leveraging the quantitative observations found in
[2], [7] that the occlusion of 5% (25%) pixels in natural
images can bring nearly 50% (90%) drop in classification
confidence, we present distribution controllers to guide the
relevance scores towards right-skew distributions [3], so
as to improve the consistency between the scores of input
features and the actual contributions. Our qualitative exper-
imental analysis on the skewness of distributions addition-
ally shows the effectiveness of the right-skewed distribution
for building human-friendly explanations, as displayed in
Fig.2. We introduce the detailed setting of the controller by
establishing the connections between its input and output
distributions and then integrate it with a trainable mask
generator to build the final estimator. Benefiting from the
controller, we directly optimize DRE under classification
losses, which avoids all ad hoc constraints and non-trivial
hyper-parameter tuning. We further discuss a simple trick
to improve saliency maps based on the ranking of relevance
scores itself, which offers DRE more flexibility to address the
various proportions of supporting features across instances.

The main contributions of our work are as follows.

• We introduce differentiated explanations and pro-
pose a novel relevance estimator DRE by integrat-
ing a distribution controller with a trainable mask
generator. We develop a practical controller to guide

relevance scores towards the desired right-skewed
distributions, where the involved hyper-parameters
can be easily set.

• We introduce classification losses to train DRE di-
rectly. It avoids the non-trivial hyper-parameter tun-
ing on ad hoc constraints and also significantly im-
proves the faithfulness of explanations.

• We empirically demonstrate the effectiveness of the
above innovations with targeted ablation studies. Be-
sides, the experimental comparison to other methods
shows that DRE not only obtains better quantitative
performance but also provides differentiated saliency
maps for human-friendly explanations.

• We extend DRE with simple tricks with post hoc
tuning. The results show that DRE can easily benefit
from itself and be adaptive to different images.

2 RELATED WORK

Gradient-based methods. Gradient-based methods lever-
age back-propagation to track information from the DNN’s
output back to its input [20]. In general, these methods are
advantageous in their high computational efficiency, i.e.,
using a few forward-and-backward iterations is sufficient
to generate saliency maps. However, the saliency maps
based on the naive gradients are visually noisy and hard to
understand. To address this issue, Smooth Grad [22] reduces
the visual noise by introducing noise to inputs repeatedly,
and Integrated Grad [24] estimates the global contribution of
each feature rather than the local sensitivity. Guided back-
prorogation [23] modifies the gradients of ReLU functions
by discarding negative values at the back-propagation pro-
cess. Besides, recent methods propose to create saliency
maps by combining the gradients with the corresponding
feature maps. For example, Grad CAM [19] and Grad CAM
++ [2] take advantage of high-level feature maps to make
saliency maps cleaner. Nevertheless, they inevitably sacri-
fice the detailed estimation of the contributions of input
features and lead to coarse saliency maps.

Perturbation-based methods. Perturbation-based meth-
ods optimize the saliency map of each decision by per-
turbing its input features and observing the change in the
output of DNNs. For example, [8] designs a preservation
game to find the smallest region that significantly increases
the probability of the target class. The authors also design
a deletion game by preventing DNNs from recognizing ob-
jects. To improve the explainability, [6] regularizes saliency
maps with middle-level feature maps and optimizes them
by reconstructing higher-level feature maps. [7] further in-
troduces extreme perturbations with a hard constraint on
saliency maps, aiming to avoid the hyper-parameter tuning
on soft ad hoc constraints. Nevertheless, to obtain a high-
quality explanation, the above methods demand hundreds
of iterations for optimizing the saliency map for each image,
leading to non-negligible time costs. Recently, [4] proposes
an efficient method for real-time saliency detection, which
utilizes a trainable network to generate saliency maps.

Model-agnostic methods. To make the explanations
compatible with more types of data and black-box classi-
fiers, model-agnostic methods are proposed, such as LIME
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Fig. 3. The framework of our differentiated relevance estimator, where a distribution controller C is introduced right after the mask generator G. For
each instance I, G takes the feature maps of the neural network E(I) as inputs and feeds the obtained mask X into the controller C. The detailed
process flow inside the mask generator G can be found in Sec.3.2.2. Then C guides the relevance scores towards the right-skewed distribution for
a differentiated mask through X→Y→Z. The final mask M with the original size is obtained via upsampling. In addition, we annotate the spatial
sizes of feature maps and display the expected distributions of the scores within the controller.

[17], SHAP [15], and Anchor [18]. In particular, LIME em-
ploys more interpretable linear models to approximate the
decisions of black-box classifiers. It assumes that each expla-
nation can be derived from the points randomly generated
around the neighborhood of the instance and their proxim-
ity measures. SHAP further introduces a united framework
for interpreting decisions based on Shapley values and
builds its connection to LIME. Nevertheless, these methods
generally take much larger time costs to converge. For
example, LIME takes around 10 minutes to explain each
decision of Inception networks, and Shapley values take a
more considerable time cost to compute [17].

3 DIFFERENTIATED EXPLANATION

3.1 Problem Statement

In a multi-class classification task, suppose a DNN classifier
f is already trained over a training set. For each instance
I, local explanation aims to find out the contributions of its
input features to the probability of the target class that we
want to interpret. Take image classification as an example,
where Ii,j denotes to the pixel of I at the location of i, j. The
corresponding local explanation is represented by a same-
size mask1 M, in which each relevance score Mi,j∈[0, 1]
represents the contribution of Ii,j for the target probability.
To improve explanations, differentiated masks are preferred.

We first analyze the perturbation-based methods [4], [8]
in Sec. 3.2 and then introduce our method for differentiated
explanations with skewed distributions in Sec. 3.3 - Sec. 3.5.
Some important notations used in Sec. 3 are listed in Tab.1.

1. In this paper, we do not distinguish saliency maps and masks, as
both indicate the permutation of relevance scores of an instance.

TABLE 1
Notations and definitions.

Notation Definition
E The encoder of the classifier.
G The mask generator after the encoder.
C The distribution controller after the generator.
t The label of the target (predicted) class.
l The number of convolutional layers.
I The notation for images.
B The notation for background images.
M The notation for saliency maps or masks.
i, j, k The symbols used for indexes.
Fk The feature maps at the k-th layer (1 ≤ k ≤ l).
Vk The embedding vector of the k-th class.
F̂l The last feature maps after the spatial attenuation.
X The output of the mask generator G.
Y The intermediate variable inside the controller C.
Z The output of the distribution controller C.
`· The symbol for different losses.

ψ(·, ·) The image perturbation with Eq.1.
ω(x) The instance normalization on x with Eq.6.
ϕ(y) The transformation function on y with Eq.7.
p(z) The probability density function of the variable z.
E[x] The expectation of the variable x.
V[x] The variance of the variable x.
η, h The parameters inside C, set based on p(z).

3.2 Perturbation Analysis

3.2.1 Formulation of Perturbation-based Methods
To find supporting pixels, these methods perturb I accord-
ing to an initialized mask M and introduce an alternative
background image B to reduce the amount of unwanted
evidence. Specifically, the perturbation is defined as

ψ(I,M) = I�M + B� (1−M), (1)
where � denotes the Hadamard product. Then these meth-
ods feed the perturbed image into the classifier and optimize
the mask to locate the supporting pixels that increase the
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probability of the target class [4]. Specifically, let t denote
the label of the target class, and ft(ψ(I,M)) is the corre-
sponding class probability of the above perturbed image.
The objective `pert of these methods can be formulated as

argminM−ft(ψ(I,M)) + λbgft(ψ(I,1−M))

+ λavΘav(M) + λtvΘtv(M),
(2)

where −ft(ψ(I,M)) encourages the supporting pixels to
obtain high relevance scores, and ft(ψ(I,1-M)) aims to
avoid the supporting pixels being regarded as the back-
ground. Besides, the constraint Θav(·) is used to minimize
the area of the mask, and Θtv(·) enforces it to be smooth.

3.2.2 Real-time Mask Generator

The iterative optimization for the above problem results in a
considerable time cost for each test image. Thus, a mask gen-
erator G that produces real-time saliency maps is proposed
in [4]. The simplified architecture is displayed at the bottom-
right of Fig.3, which consists of a class-related spatial filter,
three bottleneck cells, and a standard convolutional layer.

During the mask generation, the classifier first produces
raw feature maps {Fk}lk=1 at multiple layers for each image
based on the encoder E and obtains its label t=argmaxkfk.
Then for the last feature maps Fl, the spatial filter uses
its class-related embedding vectors to attenuate the spatial
locations whose feature vectors are dissimilar to the embed-
ding of the target class. Let Vt be the above embedding
vector. The output of the spatial filter at the location i, j
denoted as F̂lij is calculated as

F̂lij = Flijsigmoid(Flij
T
Vt). (3)

where Flij denotes the feature vector of Fl at the location
i, j. The first bottleneck cell then upsamples the filtered
maps F̂l by a factor of two using transposed convolutions
[29]. It introduces its bottleneck block [11] to generate new
feature maps based on the concatenation of the upsampled
maps and the higher-resolution raw feature maps Fl−1. The
following two bottleneck cells repeat this process as shown
in Fig.3, and the channel numbers of their generated feature
maps are the same as those of the corresponding upsampled
feature maps. The standard convolutional layer takes the
outputs of the final bottleneck cell and produces a one-
channel feature map X at a coarse scale such as 56×56.
Finally, for this coarse mask X=G(E(I), t), the upsampling
based on bilinear interpolation is employed to obtain a
smoother mask at the image scale as M=upsample(X).

Now we consider the optimization of the spatial filter
and the remaining parts of the mask generator. Similar to
metric learning [14], the class-related embedding vectors in
the spatial filter can be gradually updated by maximizing
the similarity to the feature vectors of the same-class images
while minimizing the similarity to those of different-class
images. Thus, we assign training images with true labels
(k=t) and fake labels (k 6=t) iteratively and update the em-
bedding vectors Vk by minimizing the following loss:

`embed(Fl,Vk) =

−
∑

(sigmoid(Flij
T
Vk)), k = t;∑

(sigmoid(Flij
T
Vk)), k 6= t.

(4)

Fig. 4. The examples of the masks obtained with non-monotonic map-
pings, where higher scores can not guarantee larger contributions.

After that, the remaining parts of the mask generator can be
optimized based on its generated mask M via Eq.2. Since
the mask generator is trained offline, we can obtain a real-
time explanation based on a single forward-pass.

3.2.3 Limitation Analysis
Lack of differentiation. The perturbation-based explana-
tions are formulated to distinguish the supporting features
from the background and are generally optimized based
on a large number of iterations. Although mask generators
significantly accelerate the explanations, they still fail to con-
sider the different degrees of importance of the supporting
features, and their obtained masks are lack of differentiation.

Sensitive hyper-parameter tuning. During the training
phase, balancing the trade-offs between the classification
loss and the additional soft constraints, e.g., the smoothing
term in Eq.2, involves a non-trivial hyper-parameter tuning
process. Since the quality of masks is subjective for evalu-
ation, it increases the burden of learning a good generator
where the Bayesian optimization is hard to employ [28].

3.3 Principles of Controllers

To produce differentiated saliency maps, we first introduce
the concept of distribution controllers C, which guides the
relevance scores towards desired distributions. We place the
controller right after the generator to together compose the
differentiated relevance estimator DRE. Suppose X is the
initial output of the generator (as we mentioned in Sec.
3.2.2), and Z denotes the output of C. The output of the
distribution controller is expressed as

Z = C(X). (5)
Besides, we follow [4], [6] to upsample Z with interpolation,
aiming to improve the smoothness at the image scale. An
overview of our framework is provided in Fig.3.

We investigate the principles for the controller design.
Principle 1. The hyper-parameters in C can be easily set

without prior knowledge of classifiers and datasets.
Principle 2. The output relevance scores of C approach a

right-skewed distribution over (0,1) for each decision.
Principle 3. The mapping function from the distribution

controller’s input X to its output Z is monotonic.
For the illustration of the last two principles, two ex-

amples are shown in Fig.2 and Fig.4, respectively. In the
first figure, by modifying the expected distributions of the
outputs of C from the right-skewed distribution to the left-
skewed distribution, the differentiation of the saliency map
is remarkably reduced. Besides, the proportions of pixels
highlighted with high scores are positively correlated with
the area at the right part of pre-configured distributions. It is
worthwhile noting that the quantitative observation in [2],
[7] shows that the occlusion of 5% (25%) pixels in natural
images can bring nearly 50% (90%) drop in classification
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Fig. 5. The PDFs with the different settings of hyper-parameters.

confidence, which again demonstrates the effectiveness of
the right-skewed distributions. In the second figure, a non-
monotonic transform g(x)=x2 is used in C, making the
scores deviate from the expected meaning. That is, a higher
score implies a larger contribution. In contrast, a monotonic
mapping enables to enhance the differentiation of a saliency
map without changing the ranking of its relevance scores.

3.4 Controller Design
Following the above principles, we introduce a simple de-
sign of the controller. Since the sum of two independent
random variables is more normal (Gaussian) than the origi-
nal variables [12], [13], we first assume that the distribution
of the inputs of the controller C (the outputs of the generator
G) is nearly normal for convenience. Later we show that the
proposed controller built upon this assumption also guides
other distributions towards the right-skewed ones.

3.4.1 From the Normal to the Standard Normal
To obtain the desired distributions, we first introduce in-
stance normalization [26] to guide the normal distribution
towards the standard normal distribution. The goal of this
step is to shift the scores around the opposite sides of zero.

Specifically, let xij∈X be the input entry at the location
(i, j), and yij∈Y denotes the expected variable following
a standard normal distribution. The mapping can be ex-
pressed as

yij = ω(x)ij = (xij − E[xij ])/(
√

V[xij ]), (6)

where the expectation E[·] and variance V[·] are computed
over the entries of each X.

3.4.2 From the Standard Normal to the Right-skewed
Now we guide the above scores towards right-skewed
distributions monotonically. To do this, we introduce a
customized transformation function with easy-to-set hyper-
parameters.

To produce the relevance scores with a right tail in
(0,1), we first transform the normal distribution towards a
uniform distribution based on sigmoid functions and then

change the skewness of the distribution based on power
functions. An illustrative example is shown in the bottom-
left in Fig.3. Specifically, the output zij of C is obtained as

zij = ϕ(yij) = (sigmoid(η · yij))h = (
1

1 + e−η·yij
)
h

(7)

where η aims to guide the new scores approach the uniform
distribution [27], and h determines the skewness of the final
distribution.

In particular, the hyper-parameters η and h can be easily
set according to their effects on the transformed probability
density function (PDF) p(z). To do this, we introduce the
probability density transformation [9] and obtain p(z) as

p(z) =
1√

2πhη
· 1

z(1− z1/h)
· e−

(ln(z(−1/h)−1))
2

2η2 , (8)

The detailed proof can be found in Appendix A.
Analysis. Now we set the hyper-parameters based on

their effects on the intuitive geometry of p(z), which corre-
sponds to the distribution of relevance scores.

Firstly, we fix h=1 and observe the effect of η. The
corresponding PDFs are displayed in Fig.5(a). By changing
η within (0.5,2.5), p(z) remains its skewness and changes
from the concave to the convex for z∈(0,1). In particular,
η=1.5 approximately leads p(z) to an uniform distribution.
Considering 1.5≈0.9

√
π, it is consistent to the sigmoid ap-

proximation of the cumulative probabilities of the standard
normal distribution [27].

Secondly, we set η={0.5,1.5,2.5} and observe the effect of
h. Three PDF figures are displayed in Figs.5(b-d), where all
p(z)s are able to obtain right-skewed distributions under a
large h. However, the geometries of these p(z)s are signifi-
cantly different. Fig.5(b) shows that p(z) with η=0.5 obtains
extremely low probabilities for z∈(0.5,1). Once a relevance
score larger than 0.5 appears and becomes an outlier, this
range for highlighting strong supporting features is likely
to be wasted. Fig.5(c) shows that p(z) with η=2.5 continues
the undesired convexity and leads to more high scores than
middle scores. p(z) with η=1.5 can lead to a clear tail over
the range of (0,1), as shown in Fig.5(d).

Above all, η=1.5 enables the sigmoid approximation of
the cumulative probability for the standard normal distribu-
tion and leads it to a uniform distribution [27]. With h=2.5,
we can further obtain the scores under the right-skewed
distribution with a clear tail over (0,1). Note that other
transformations with monotonicity can also be considered.

3.4.3 Effects on Other Distributions.
Now we relax the normal distribution on X and analyze the
effects of the above controller (η=1.5 and h=2.5) on other
typical distributions, including uniform distributions, the
mixtures of normal distributions, and skew normal distribu-
tions. For simplicity, we only show the results based on the
synthetic data and leave the detailed analysis in Appendix
B. The original distributions (the 1st row) and their trans-
formed distributions (the 2nd row) are displayed in Fig.6.
As we can see, although the controller may not transform
them into the right-skewed distributions completely, it still
shifts a majority of relevance scores towards lower values
and remains a minority of the scores at high values, which
makes the scores away from the left-skewed distributions.
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Fig. 6. The effects of the controller on the synthetic data with different
distributions. The 1st and the 2nd rows show original distributions and
their transformed distributions, respectively. For a quantitative compari-
son, we also list their Pearson’s Coefficients of Skewness (CoS) [5].

From a quantitative perspective, we also calculate their
Pearson’s Coefficients of Skewness (CoS) [5] for comparison.
Specifically, if skewness is positive (negative), the relevance
scores are right- (left-) skewed, meaning that the right (left)
tail of the distribution is longer than the left (right). As we
observe, our controller consistently increases the values of
the skewness for the above typical distributions.

3.5 Estimator Optimization

This section pays attention to the optimization of the above
differentiated relevance estimator DRE. Denote `class as the
classification loss used for training DNNs, such as the com-
monly used cross-entropy loss. Considering the explanation
is already guided to be differentiated, DRE can be directly
optimized without the non-trivial hyper-parameter tuning:

argminG`class(f(ψ(I,M)), t), where M = upsample(C(X)).
(9)

In particular, Eq.9 enables us to improve the faithfulness
of explanations, since it is simplified to find the region
that maximizes the target probability under the expected
distribution. It is also valuable to train the classifier and the
relevance estimator at the same time. As this paper focuses
on post hoc explanations, we leave it for our future work.

4 EXPERIMENTS

This section investigates the performance of DRE. We first
evaluate the faithfulness and the explainability based on
object recognition and scene recognition tasks. Then, we
introduce simple tricks to further improve the performance.
Finally, we perform targeted ablation studies to empirically
demonstrate the effectiveness of the proposed innovations
and discuss the results for misclassifications.

4.1 Setup

To demonstrate the broad applicability, we apply the pro-
posed DRE to 3 types of CNNs, including ResNet50 [11],
VGG19 [21], and GoogleNet [25]. The following 9 methods
are used for comparison: (1) Mask Generator (MGnet) [4],
(2) Meaningful Perturbation (MPert) [8], (3) Grad CAM

TABLE 2
Characteristics of compared methods. The easy-to-set
hyper-parameters are not regraded as sensitive ones.

number of sensitive
hyper-parameters

number of
iterations per explanation

DRE - 1
MGnet 3 1
MPert 2 300
FInv 3 80
XPert - 300
GCAM - 1
GCAM++ - 1
VGrad - 1
SMGrad 1 50
ITGrad - 200

(GCAM) [19], (4) Grad CAM++ (GCAM++) [2], (5) Feature
Inversion (FInv) [6], (6) Extreme Perturbation (XPert) [7],
(7) Vanilla Gradient (VGrad) [20], (8) Smoothness Gradient
(SMGrad) [22], (9) Integrated Gradient (ITGrad) [24]. Of
note, most of them require a large number of forward-
and-backward iterations to build each mask and involve
sensitive hyper-parameters in their objective functions. A
summary is shown in Tab.2. We do not regard easy-to-set
hyper-parameters as sensitive ones, such as the number
of iterations2 in MPert. We empirically tune the sensitive
hyper-parameters around their suggested values.

Implementation. For each of the above CNNs, we divide
its convolutional layers into a few groups based on the
resolutions of their outputs. We then introduce the three
bottleneck cells at the intermediate positions to get the
raw feature maps. We use varying channel numbers for
different CNNs, aiming to propagate sufficient information
between the cells while keeping efficiency. Specifically, for
ResNet50 which consists of the intermediate layers with
{256,512,1024} channels, we introduce one quarter channels
for the high-to-low-resolution cells, namely {64,128,256}; for
VGG19 and GoogleNet that contain the intermediate layers
with {128,256,512} and {192,480,832} channels, we half
the channel numbers for the corresponding cells, namely
{64,128,256} and {96,240,416}, respectively. We use a two-
stage scheme to train the relevance estimator. We first train
class-related spatial filters based on the sampled images
from the training set and then optimize other parts of the
relevance estimator for 10 epochs. Of note, no ground truth
is introduced, and only the outputs of the classifiers are
utilized. We set the batch size to 64 and use Adam with the
initialized learning rate of 10−2. We apply the step decay
and reduce the learning rate by half every three epochs.
During the second stage, 50% background images are set
to the Gaussian blurred version of raw images with the
variance of 10, and the remaining ones are set to random
color images with the addition of Gaussian noise. For a fair
comparison, all perturbation-based methods apply the same
strategy for adding perturbations.

Quantitative metrics. The faithfulness and the explain-
ability of saliency maps are supposed to be evaluated based
on the relevance scores of all pixels. Here we introduce two
generalized metrics based on the ranking of pixels.

2. A larger iteration number empirically brings in better performance.
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TABLE 3
Ranking-based quantitative evaluation on faithfulnessMF .

ImageNet Birds-200-2011
ResNet50 VGG19 GoogleNet MEAN ResNet50 VGG19 GoogleNet MEAN

DRE 77.13 76.75 69.24 74.37 84.62 85.25 82.13 84.00
MGnet 56.61 60.09 50.57 55.75 64.97 75.90 75.32 72.06
MPert 72.40 73.92 64.00 70.10 76.08 82.31 75.09 77.83
FInv 66.73 67.31 61.50 65.18 75.14 78.53 78.52 77.40
XPert 62.07 67.55 52.98 60.87 76.90 80.82 75.84 77.85
GCAM 70.13 64.56 67.84 67.51 77.67 80.49 79.43 79.20
GCAM++ 68.34 69.96 62.51 66.94 78.42 79.75 78.34 78.84
VGrad 18.80 13.57 15.43 15.93 12.23 11.51 10.12 11.29
SMGrad 29.38 35.47 40.26 35.03 46.97 48.80 56.58 50.78
ITGrad 16.47 20.35 43.37 26.73 20.71 22.03 35.19 25.98

TABLE 4
Ranking-based quantitative evaluation on explainabilityME .

ImageNet
ResNet50 VGG19 GoogleNet MEAN

DRE 83.02 83.91 81.73 82.89
MGnet 82.62 83.53 81.87 82.67
MPert 75.74 72.50 70.98 73.07
FInv 75.20 72.63 75.35 74.39
XPert 78.73 80.92 71.26 76.97
GCAM 79.28 74.93 82.15 78.79
GCAM++ 82.86 84.46 83.20 83.51
VGrad 66.23 70.90 66.78 67.97
SMGrad 73.17 74.03 70.31 72.50
ITGrad 66.92 66.74 63.25 65.64

Faithfulness. The traditional metrics use heuristic seg-
mentation strategies on the scores of each mask and cal-
culate the probability of the target class based on a fixed
ratio of clean high-score pixels, which reduces the fairness
for comparing different methods [8]. We instead utilize the
ranking of pixels and perform the evaluation based on
the target class probabilities corresponding to a number of
ratios. Suppose ∆ is the interval for the ratio of clean high-
score pixels, and Si denotes the set of locations with the top
i×∆ highest scores. For each image, we first estimate the
probability of its fully blurred version as Q0=ft(ψ(I,0)).
Then we replace its blurred pixels within Si by the corre-
sponding i×∆ pixels in the clean image and estimate the
probability of the new image as Qi. We repeat this step
by increasing the ratio of clean pixels, until reaching the
fully clean image and obtaining Qm=ft(ψ(I,1)) (m×∆=1).
With the intervals of ∆, the area under the curve (AUC)
of the probability vs. the ratio is used as the measure of
faithfulness:

MF = 100%×
∑
i

Qi ·∆, i = 1, 2, . . . ,m. (10)

Explainability. The explanation with high explainability
should provide clear reasons that are easy to understand.
Since it is time-consuming for users to detect the locations
of all meaningful features (including bias features), we gen-
erally use bounding boxes as an alternative for its evaluation
[6], [8]. For example, weakly-supervised object localization
evaluates masks by calculating the intersection over the
union between their binary variants and bounding boxes.
Nevertheless, it faces the issue of choosing thresholds. Thus,
we introduce a new metric by regarding the relevance scores

as the results of retrieval tasks [1]. Specifically, let Si be the
set of locations that obtain the top i highest relevance scores,
and Sb indicates the set of locations within the bounding
box. We calculate the precision Pi=

|Sb∩Si|
|Si| as the fraction

of these i locations retrieved within bounding boxes, and
the recall Ri=

|Sb∩Si|
|Sb| as the fraction of the within-bounding-

box locations that are retrieved within these i locations.
By computing Pi and Ri for all Sis, we can evaluate the
explainability by the AUC of the precision vs. the recall as

ME = 100%×
∑
i

Pi · (Ri −Ri−1). (11)

4.2 On Object Recognition

This section investigates the effectiveness of the proposed
method in object recognition tasks, which is the primary
motivation of introducing right-skewed distributions. We
use two real-world image datasets ImageNet and Birds-200-
2011 for evaluation, where the latter is a fine-grained dataset
of 200 bird species. In particular, we load pre-trained CNNs
from torchvision for ImageNet and train ResNet50, VGG19,
and GoogleNet to build the classifiers for Birds-200-2011.

4.2.1 Ranking-based Quantitative Evaluation

On the faithfulness withMF . To evaluate the faithfulness
of the proposed relevance estimator, we calculate the mean
of the metricMF based on 10,000 and 2,000 sampled images
for ImageNet and Birds-200-2011, respectively. We set ∆= 1

32
as the interval. Besides, we add a smoothed mask over
the original one with a small weight. We introduce min-
max normalization onMFs of all methods for each image,
balancing the effects of different images.

The results of the average MFs are displayed in Tab.3,
where the following observations can be obtained. Firstly,
VGrad, SMGrad, and ITGrad are generally worse than the
others with a large gap. It is understandable that, these
methods search sensitive pixels based on the gradients, and
the pixels with high scores will be discretely distributed
in each image. As a result, it becomes harder for them to
gather sufficient supporting information in a local receptive
field and recover a high class probability. Secondly, GCAM
obtains comparable performance to GCAM++ on average,
and MPert that directly optimizes masks in a high resolution
also brings satisfying faithfulness. Thirdly, DRE outperforms
all the other methods and enjoys much better performance



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

Fig. 7. The saliency maps of different explanation methods for the CNNs trained on ImageNet, in which these sampled images obtain correct
classifications. We also display the heatmap of their normalizedMF values.
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Fig. 8. The saliency maps of different explanation methods for the CNNs trained on Birds-200-2011, in which these sampled images obtain correct
classifications. We also display the heatmap of their normalizedMF values.
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Fig. 9. The saliency maps of different explanation methods for the ResNet50 trained on Places365, in which these sampled images obtain correct
classifications. We also display the heatmap of their normalizedMF values.

than MGnet. Since the two methods apply the same archi-
tectures for their mask generators, the results demonstrate
that guiding the relevance scores towards right-skewed
distributions improves the ranking of supporting features.

On the explainability with ME . To reveal the explain-
ability, we introduceME by evaluating the performance of
object localization. For this, we resize and crop bounding
boxes to the size of 224×224, leading to the same size of test
images. The experiments are performed on 10,000 validation
images of ImageNet with bounding box annotations.

The results of average MEs are listed in Tab.4, where
we obtain the following observations. Firstly, the last three
gradient-based methods generally perform worse than the
others. The possible reason is that, gradients are insensi-
tive to the smooth supporting regions, which makes these
regions ignored and harms the ranking of pixels. Secondly,
GCAM++ obtains better performance than GCAM and the
other methods. Understandably, the former is designed to
detect multiple objects in the image and assign them high
relevance scores. Finally, by replacing all constraints with
a simple distribution controller, DRE outperforms MGnet
with a small gap, and both of them enjoy better performance
than most other methods. The reason is that, benefiting from
the training with large-scale images, they tend to generate
high relevance scores for the supporting features that are
robust to the target class. If the bias features do not play the
main role in the classification, the corresponding supporting
regions prefer the locations inside the objects.

To sum up, DRE obtains comparable or even better ex-
plainability to others but achieves much higher faithfulness.
Therefore, although we are not able to analyze the effects
of bias features without more human intervention, the syn-
thetic results still demonstrate its effectiveness empirically.

4.2.2 Visualization-based Qualitative Comparison
Below we visually compare different explanation methods
based on their obtained saliency maps. The red and blue col-
ors denote the high and low scores, respectively. We sample

images from ImageNet and Birds-200-2011, and show their
results in Fig.7 and Fig.8. In particular, we also display their
normalized MF values via a heatmap, in which the color
of each rectangle represents the faithfulness of the saliency
map at the corresponding location.

From these results, we have the following observations.
Firstly, the gradient-based methods bring more low rele-
vance scores for the pixels insides the objects and high
relevance scores for the pixels outside the objects. Consid-
ering their lower faithfulness, this observation implies that
the supporting pixels generally locate inside the objects as
expected, demonstrating the effectiveness of estimating the
explainability with bounding boxes. Secondly, since GCAM
and GCAM++ only take high-level feature maps into ac-
count, they fail to provide a detailed estimation of relevance
scores. This issue becomes more obvious for fine-grained
images, where they can only detect the locations of the
objects. Besides, GCAM and GCAM++ may still miss a
majority of supporting pixels of objects, such as the 4th row
in Fig.8. Thirdly, MGnet is case-sensitive, which will either
detect all supporting pixels or a few most important ones.
Although we can carefully adjust the hyper-parameters for
each kind of datasets and networks, the mask generators
need to be re-trained for each setting, reducing its prac-
ticability significantly. Similarly, MPert and FInv contain
sensitive hyper-parameters that need to be tuned for each
instance individually. Fourthly, MGnet assigns the detected
pixels similar relevance scores and loses the differentiation.
We have attempted to perform the controller on its obtained
masks in a post hoc manner, which still fails to build
differentiated masks. The reason is that its relevance scores
are already stacked at 0 and 1. Finally, DRE not only obtains
high scores for the supporting pixels inside the objects and
brings higher faithfulness, but also displays the different
degrees of importance of these pixels, e.g., the supporting
pixels within the animals’ heads are more important than
those within the other parts.
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Fig. 10. The illustrative examples for Sec. 4.4, which are built upon ResNet50 with ImageNet. (a) The effects of post hoc tuning tricks on saliency
maps. (b) The effects of different pre-configured distributions (the 1st column) on saliency maps (the 2nd-7th columns). Each row of masks
corresponds to a pre-configured distribution. (c) The effects of the ad hoc constraints on DRE and MGnet [4].

TABLE 5
Ranking-based quantitative evaluation on faithfulnessMF .

Places365 (ResNet50)
DRE MGnet MPert FInv XPert
70.45 53.85 64.61 64.84 55.71

GCAM GCAM++ VGrad SMGrad ITGrad
68.60 60.89 7.73 38.07 45.20

4.3 On Scene Recognition

Now we introduce the explanation methods for the CNNs
trained on scene images. Specifically, we first train ResNet50
on Places365 and then regard it as the black-box classifier.
We list their faithfulness metricMF in Tab.5 and show some
of their obtained saliency maps in Fig.9.

From these results, we obtain the following observations.
Firstly, comparing to the masks for object images, the high
scores of DRE and MGnet for scene images may locate at
more than one region of an image. Understandably, scenes
are composed of objects, and the conception of scenes is
more comprehensive than that of objects. Secondly, although
the masks of DRE tend to be visually noisy compared
with GCAM and GCAM++, they still detect the important
regions clearly and lead to high faithfulness. From the
quantitative perspective, we also observe that DRE obtains
higher faithfulness than all the other methods.

4.4 Discussion

In this section, we first introduce some simple tricks to
further improve the proposed method. After that, since
the right-skewed distributions are used and the ad hoc
constraints are ignored, their impacts are investigated via

targeted ablation studies. Finally, we discuss the saliency
maps corresponding to misclassifications.

4.4.1 On Improvements with Simple Tricks
Although DRE has achieved stratifying performance with-
out the non-trivial hyper-parameter tuning, constraining the
scores of various images towards the same pre-configured
distribution may lead to low but redundant scores on back-
grounds, especially when the supporting pixels only take a
tiny part of all pixels. Thus, we present two simple tricks
to further improve the differentiation of DRE, including
one self-based and one MGnet-based. For convenience, only
ResNet50 is used as the classifier.

DRE+ (Self-based). This trick improves DRE based on
the saliency map itself. Given an estimated mask with the
relevance scores of pixels, we first follow the process in the
faithfulness metric to iteratively calculate the probability
Qi based on the top i×∆ pixels. Next, we modify these
probabilities with Qi=maxQj≤i to obtain the monotonicity.
For efficiency, we only calculate the probability Qi at the
i×∆-th pixels and infer the probabilities at the remaining
pixels with linear interpolation. Since the k-th pixel is not
likely to be the supporting one if Qk already approaches
the maximum Qmax (maxkQk), we perform the post hoc
tuning on the relevance scores as M ′k=Mk×Wk, where
Wk=(Qmax−Qk), and Mk is the original relevance score.

DRE+ (MGnet-based). It is natural to cooperate the
proposed DRE with MGnet [4], since the latter can obtain
clearer boundaries between objects and backgrounds. Thus,
we introduce another mask as M′ = MDRE �MMGnet. For
simplicity, we perform the post hoc combination without
training them together with the shared mask generator.

The obtained masks showing the effects of DRE+ (Self-
based) and DRE+ (MGnet-based) are displayed in Fig.10(a),
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Fig. 11. The examples of the masks of different methods on ImageNet (1st-2nd rows), Birds-200-2011 (3rd-4th rows), and Places365 (5th-6th rows),
where ResNet50 is used as the classifier. Of note, labels in black indicate the ground truths, and those in blue denote the predicted classes.

where the masks of original DRE and MGnet are also pro-
vided. From the results, the following observations can be
made. Firstly, compared with MGnet, DRE without post hoc
tuning sometimes sacrifices the boundaries between objects
and backgrounds. Secondly, by combing the masks of DRE
and MGnet, DRE+ (MGnet-based) improves the boundaries
while keeping the differentiation to some degree. Thirdly,
owing to the better ranking of the scores over all pixels
(demonstrated byMF in Sec. 4.2.1), DRE+ (Self-based) can
effectively utilize DRE’s masks to reduce the noise around
the boundaries and highlight the supporting pixels with
differentiated scores. Since it does not introduce extra hyper-
parameters, DRE+ (Self-based) is more practical. We further
introduce flexible variants of self-based tuning in Appendix
C, which could be more beneficial to DRE.

4.4.2 On Distribution Controller: the Effects of Distributions.
To show the effectiveness of the proposed controller, we
first change the setting of its hyper-parameters, which leads
the input with normal distributions to different types of
pre-configured distributions. Specifically, we set (η,h) to
(0.5,2.5), (1.5,2.5), (1.5,1.5), (2.5,2.5), (1.5,0.5) and the 5 cor-
responding distributions are shown in the 1st column in
Fig.10(b). For convenience, we only use ResNet50 as the
classifier and train the relevance estimators for 3 epochs. The
examples of the corresponding saliency maps are shown in
the following columns in the same figure.

As we can see, although it is hard to expect that all
masks obtain relevance scores with the same distributions as
the pre-configured ones, the controllers consistently enforce
them towards these distributions. In general, the estimators
built upon the right-skewed controllers obtain the differen-
tiated masks, and the estimators built upon the left-skewed
controllers reduce the explainability significantly.

4.4.3 On Optimization: the Effects of Ad Hoc Constraints.
To evaluate the impact of our simplified objective function,
we introduce an ablation study to analyze how the ad hoc

constraints affect the proposed relevance estimator. Follow-
ing the formulation of MGnet with Eq.2, we add them
back to Eq.9 and train the estimator using the following
hyper-parameter settings: (1) carefully-tuned λs, (2) λav=0,
(3) λav=λbg=0, (4) λav=λtv=0, (5) λav=λbg=λtv=0. For com-
parison, an ablation study is also performed on MGnet with
the setting of (1) carefully-tuned λs, (2) λav=0, (3) λbg=0, (4)
λtv=0, (5) λbg=λtv=0. For efficiency, we only use ResNet50
as the black-box classifier and train the corresponding es-
timators for 3 epochs. The masks corresponding to various
settings are displayed in Fig.10(c).

From the results, the following observations can be
obtained. Firstly, comparing the 6th column with the 2nd
column, we can see that by adding all the constraints
back, the masks of DRE can be improved to some degree.
However, we also observe from the 3rd column that λav=0
has few effects on our relevance estimator. Besides, λbg=0
will increase the noise around the boundaries owing to the
smoothness constraint (in the 4th column), and λtv=0 causes
the holes in the masks (in the 5th column). Nevertheless,
by further removing these two terms, these shortcomings
can be alleviated, and the final masks of DRE remain the
satisfying quality (in the 6th column). Secondly, all the
constraints in MGnet, however, result in remarkable im-
pacts on its masks, especially λav=0 (in the 8th column).
Although λbg=0 can relax the masks and improve their
differentiation, it would ignore a part of supporting features,
such as the 4th-5th rows in the 9th column. Besides, it
enhances the sensitiveness of λav. For example, while λbg
is carefully set, λav varying within (2,12) consistently leads
to acceptable results for ResNet50. Once λbg=0, the quality
of masks is acceptable only for λav∈(2,4). The reason is that,
minimizing ft(ψ(I,1-M)) can avoid the supporting pixels
being regarded as backgrounds. Once this term is removed,
the size of the supporting pixels is totally controlled by
the hyper-parameter λav. When it is slightly larger, a part
of supporting pixels will be regarded as backgrounds. In
short, benefiting from the distribution controllers, DRE can
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be insensitive to the ad hoc constraints.

4.4.4 On Misclassifications

As the objective of explanation methods aims to explain all
decisions, the explanations on misclassifications also need
to be investigated. We thus show the masks of different
methods on misclassified images. We take ResNet50 as an
example and display the masks of the images from different
datasets in Fig.11. As we can see, most explanation methods
still target the typical parts of objects or the representative
objects of scenes. It implies that different classes may share
the same visual features, which leads to misclassifications.
For example, the object images in the 1st-2nd rows share the
similar shapes with the predicted classes, the bird images
in the 3rd-4th rows share the similar colors with the wrong
classes, and the scene images in the 5th-6th rows focus on
the similar objects to the predicted classes. This observation
is in line with the finding in [30], where different classes of
scene images share the same object-level features.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce a simple but effective relevance
estimator called DRE to provide differentiated explanations
for the decisions of DNNs. Specifically, we present the
concept of distribution controllers on relevance scores and
integrate it with a trainable mask generator to directly
guide the relevance scores. By analyzing the effects of the
skewness of the pre-configured distributions, we develop
a simple distribution controller with the right-skewed dis-
tribution. We optimize DRE under the classification loss
without non-trivial hyper-parameter tuning, which also im-
proves the faithfulness of explanations. For each of the
above innovations, we perform the targeted experiments
to investigate their effectiveness. Finally, we compare DRE
with state-of-the-art methods, and the experimental results
demonstrate that DRE significantly improves faithfulness
with high explainability.

There are some aspects needing further investigations.
Firstly, although this paper provides an intuitive compar-
ison of the transformed distributions for setting hyper-
parameters, a quantitative analysis of the ratio of features
at the tail is preferable. Secondly, since self-based tuning
can improve saliency maps, it is worth incorporating it into
the original models for an end-to-end optimization. Thirdly,
benefiting from the simpleness of using distribution con-
trollers, explaining the decisions of graph neural networks
based on the controllers becomes another possible direction.

APPENDIX A
THE PROOF OF EQ.8 IN SEC.3.4.2

Let p(y) denote the probability density function (PDF) of the
variable y, and the transformed variable z is calculated as
z = ϕ(y). According to the probability density transforma-
tion [9], the transformed PDF p(z) can be obtained as

p(z) = py(ϕ−1y (z)) · |
∂ϕ−1y (z)

∂z
|, (12)

Fig. 12. The data flow inside the distribution controller with variables X,
Y, and Z.

where ϕ−1y (z) denotes the inverse function of z on y, and
py(ϕ−1y (z)) means substituting the above result into the PDF
of y. Based on Eq.7 in the paper, we obtain

y = ϕ−1y (z) = −1

η
ln(z−1/h − 1), (13)

where (z−1/h-1)>0. With simple derivations, we obtain:

|
∂ϕ−1y (z)

∂z
| = 1

ηh
· 1

z(1− z(1/h))
. (14)

In addition, p(y) follows the standard normal distribution,
which can be formulated as

p(y) =
1√
2π

e−
y2

2 . (15)

By substituting Eq.13 into Eq.15, and then substituting
Eqs.14-15 into Eq.12, we finally obtain

p(z) =
1√

2πhη
· 1

z(1− z1/h)
· e−

(ln(z(−1/h)−1))
2

2η2 , (16)

which completes the proof.

APPENDIX B
THE CONTROLLER ON OTHER TYPICAL DISTRIBU-
TIONS IN SEC.3.4.3

Now we consider the effects of the distribution controller
beyond normal distributions. Of note, x∈X denotes the in-
put of the controller (output of the generator), y∈Y denotes
the intermediate variable after instance normalization, and
z∈Z denotes the output of the distribution controller. For
convenience, we show the illustrative positions of these
variables in Fig.12.

Recall that we have y=ω(x) via Eq.6 and z=ϕ(y) via Eq.7.
According to the probability density transformation [9], the
transformed PDFs p(y) and p(z) can be obtained as

p(y) = px(ω−1x (y)) · |∂ω
−1
x (y)

∂y
| (17)

and

p(z) = py(ϕ−1y (z)) · |
∂ϕ−1y (z)

∂z
|, (18)

where ω−1x (y) is the inverse function of y on x, and ϕ−1y (z)
is the inverse function of z on y. In particular, since ω(x) in
Eq.6 denotes the instance normalization, we obtain

x = ω−1x (y) = y
√

V[x] + E[x], |∂ω
−1
x (y)

∂y
| =

√
V[x]. (19)
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Fig. 13. The transformed PDF curve for inputs with uniform distributions.

B.1 On Uniform Distributions

Firstly, we consider the variable x with uniform distribu-
tions, whose PDF can be formulated as

p(x) =


1

b− a
, a < x < b

0 , others.
(20)

For uniform distributions, we can calculate the expectation
E[x] as a+b

2 , and the variance V[x] as (b−a)2
12 . According to

Eq.19, we obtain

x = ω−1x (y) =
b− a
2
√

3
× y +

a+ b

2
(21)

and

|∂ω
−1
x (y)

∂y
| = b− a

2
√

3
. (22)

By substituting Eqs.20-22 into Eq.17, p(y) is obtained as

p(y) =


1

2
√

3
, a <

b− a
2
√

3
× y +

a+ b

2
< b

0 , others,

(23)

which is equal to

p(y) =


1

2
√

3
, −
√

3 < y <
√

3

0 , others.
(24)

Furthermore, by substituting Eqs.13-14 and Eq.24 into Eq.18,
we obtain p(z) as

1

2
√

3ηhz(1− z(1/h))
,−
√

3 < −1

η
ln(z−1/h − 1) <

√
3

0 , others,
(25)

which is equal to
1

2
√

3ηhz(1− z(1/h))
, (e
√
3η + 1)

−h
< z < (e−

√
3η + 1)

−h

0 , others.
(26)

With η=1.5 and h=2.5 in Eq.26, we finally obtain the PDF
curve of p(z), as shown in Fig.13.

From this figure, we observe that p(z) has a clear right
tail over (0,1). Since we aim to obtain right-skewed distri-
butions on the final output z, this observation demonstrates
the effectiveness of our controller for the inputs with uni-
form distributions.

Fig. 14. The transformed PDF curves for inputs with skew normal distri-
butions. The left shows the original distributions, and the right shows the
transformed distributions.

B.2 On Skew Normal Distributions

Below we analyze the effects on skewed distributions. For
simplicity, we focus on the skew normal distribution, which
can be formulated as

p(x) = 2φ(x)Φ(ax), (27)

where φ(x)= 1√
2π

e(−
x2

2 ), Φ(x)=
∫ x
−∞ φ(t)dt= 1

2 [1+erf( x√
2
)]

(erf denotes ”error function”). Similarly, by substituting
Eq.19 and Eq.27 into Eq.17, we can obtain p(y):

2φ(y
√

V[x] + E[x])Φ(a(y
√
V[x] + E[x]))×

√
V[x], (28)

where we have E[x]=
√
2a√

(1+a)π
and V[x]=(1- 2a2

π(1+a2) ) for the

skew normal distributions. By substituting Eqs.13-14 and
Eq.28 into Eq.18, we obtain the transformed PDF p(z):

2φ(ϕ−1y (z)
√
V[x] + E[x])Φ(a(ϕ−1y (z)

√
V[x] + E[x]))

×
√

V[x]× |
∂ϕ−1y (z)

∂z
|,

(29)

where ϕ−1y (z)=− 1
η ln(z−1/h-1) and |∂ϕ

−1
y (z)

∂z |= 1
ηhz(1−z(1/h)) .

We substitute η=1.5 and h=2.5 into Eq.29 to obtain the final
PDF. In particular, we change a from -20 to 20, and display
their corresponding transformed PDF curves in Fig.14.

As we can see, for the different skewness of the original
distributions (the right-skewed distribution with a>0 or
the left-skewed distribution with a<0), their correspond-
ing transformed distributions p(z)s have clear right tails
over (0,1). As before, it demonstrates the effectiveness of
the proposed controller for the inputs with skew normal
distributions.

B.3 On Mixture of Normal Distributions

Now we consider the mixture of normal distributions. Sup-

pose Ψ(x, σi, µi)= 1√
2π

e
− (x−µi)

2

2σ2
i and ri denotes the weight

of the i-th component with
∑
i ri=1. The PDF for x with the

mixture of normal distributions is formulated as

p(x) =
∑
i

riΨ(x, σi, µi). (30)

By substituting Eq.19 and Eq.30 into Eq.17, we obtain

p(y) =
∑
i

riΨ(y
√

V[x] + E[x], σi, µi)
√

V[x]. (31)
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Fig. 15. The transformed PDF curves for inputs with the mixture of normal distributions. The left shows the original distributions, and the right shows
the transformed distributions. Specifically, for these sub-figures, we have (a) µ2 = 2, (b) µ2 = 4, (c) µ2 = 8, (d) µ2 = 16.

In particular, we focus on the mixture of two normal dis-
tributions, where we have E(x)=r1µ1+r2µ2 and V[x]=r1σ2

1+
r2σ

2
2+r1r2(µ1-µ2)2. Similarly, we substitute Eqs.13-14 and

Eq.31 into Eq.18 and obtain p(z) as

∑
i

riΨ(ϕ−1y (z)
√

V[x] +E[x], σi, µi)
√
V[x]|

∂ϕ−1y (z)

∂z
|, (32)

where ϕ−1y (z)=− 1
η ln(z−1/h-1) and |∂ϕ

−1
y (z)

∂z |= 1
ηhz(1−z(1/h)) .

We set η=1.5 and h=2.5 in Eq.32 as before to build the
final transformed PDF. For simplicity, we set σ1=σ2=1 and
µ1=0. We change r1 within {0.1, 0.2, . . . , 0.9} and µ2 within
{2, 4, 8, 16}. The curves of the corresponding transformed
PDFs are displayed in Fig.15. Of note, the mixtures of the
above normal distributions with r1={0, 1} or µ2=0 equal to
single normal distributions.

From this figure, we can obtain the following observa-
tions. Firstly, a large µ2 brings a significant characteristic
of bimodal distributions, namely two distinct peaks, which
increases the difficulty of transformation. For example, with
µ2=16 and r1=0.9, a part of values between (0.2,0.8) will be
wasted due to the extremely low probabilities. However, if
the two distributions are not too far away from each other
(with respect to their variances), we observe that only a mi-
nority of the transformed scores are close to 1, and a majority
of the scores are much lower and different. Thus, although
this figure does not cover all kinds of mixtures of normal
distributions, it still shows the effectiveness of our controller
on the mixtures to some degree. Secondly, small r1s result
in the left tails for the original distributions. Benefiting from
our controller, their transformed distributions are guided
towards the right-skewed ones.

APPENDIX C
THE VARIANTS OF SELF-BASED TUNING

In DRE+ (Self-based), we take advantage of the ranking
of scores and use the accumulated class probabilities to
improve masks. However, its post hoc trick is independent
of the model training. Below we propose potential variants
of the self-based tuning with an end-to-end optimization,
which could probably help the optimization of the proposed
relevance estimator and make it more adaptable. We leave
the experimental investigations as future work.

Note that during the self-based tuning, we first estimate
the extra weight Wk=Qmax-Qk for each pixel, where Qmax

denotes the maximal probability and Qk is the current accu-
mulated probability. Then we combine it with the original
score Mk for the final relevance score in the saliency map,
represented as M ′k=Mk×Wk. More details can be found
in Sec. 4.4.1. Although the variables Wks are untrainable
for a fixed DNN, they keep being updated during the
optimization of Mk. Therefore, we can directly introduce
M′ as the mask in Eq.9 for model training. Compared with
the original version where all Wks are equal to 1, it weakens
the obtained relevance scores, especially the pixels within
the background. Since the number of high scores is limited
for each mask, this variant could enforce the relevance
estimator to take more effort to detect important supporting
pixels while ignoring the role of background, which further
improves the differentiation. The potential issue is that
calculating all Wks for each image can lead to huge time
costs in model training. Therefore, the trade-off between the
performance and the training efficiency built upon the linear
interpolation of Wks needs further investigations. Further
improvement can be made for the generation of Wks. That
is, to avoid the considerable time costs of estimatingWks for
testing images, we can predict them by learning to fit Wks
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of training data. However, it inevitably introduces an extra
hyper-parameter in the objective and requires more effort
for sensitive analysis.
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