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FLAG: Faster Learning on Anchor Graph
with Label Predictor Optimization
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Abstract—Knowledge graphs have received intensive research interests. When the labels of most nodes or datapoints are missing,
anchor graph and hierarchical anchor graph models can be employed. With an anchor graph or hierarchical anchor graph, we only
need to optimize the labels of the coarsest anchors, and the labels of datapoints can be inferred from these anchors in a coarse-to-
fine manner. The complexity of optimization is therefore reduced to a cubic cost with respect to the number of the coarsest anchors.
However, to obtain a high accuracy when a data distribution is complex, the scale of this anchor set still needs to be large, which thus
inevitably incurs an expensive computational burden. As such, a challenge in scaling up these models is how to efficiently estimate the
labels of these anchors while keeping classification performance. To address this problem, we propose a novel approach that adds an
anchor label predictor in the conventional anchor graph and hierarchical anchor graph models. In the proposed approach, the labels of
the coarsest anchors are not directly optimized, and instead, we learn a label predictor which estimates the labels of these anchors with
their spectral representations. The predictor is optimized with a regularization on all datapoints based on a hierarchical anchor graph,
and we show that its solution only involves the inversion of a small-size matrix. Built upon the anchor hierarchy, we design a sparse
intra-layer adjacency matrix over these anchors, which can simultaneously accelerate spectral embedding and enhance effectiveness.
Our approach is named Faster Learning on Anchor Graph (FLAG) as it improves conventional anchor-graph-based methods in terms of
efficiency. Experiments on a variety of publicly available datasets with sizes varying from thousands to millions of samples demonstrate
the effectiveness of our approach.

Index Terms—Semi-supervised learning, graph-based learning, machine learning
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1 INTRODUCTION

Knowledge graphs, which organize information in a struc-
tured way by describing the relationships among enti-
ties, have received much attention from both academia
and industry in the past few years [16], [17], [36]. Well-
known knowledge graph systems include Google Knowl-
edge Graph, Probase, DBPedia, YAGO, and TrueKnowledge.
In a knowledge graph, entities are denoted as nodes or
datapoints, categories are their labels, and relationships
are directed links between these datapoints [32]. Howev-
er, in most data mining applications, the labels of many
datapoints are missing, and it is often prohibitively labor-
intensive and time-consuming to collect their labels. In
contrast, the amount of unlabeled data can be huge in many
domains. Semi-Supervised Learning (SSL), which exploits
the prior knowledge from both unlabeled and labeled data,
thus attracts considerable attention to estimate the missing

the weight of the edge between two nodes represents their
similarity. As a consequence, the labels for classification
can be propagated from limited labeled data to remaining
unlabeled data on the graph. This intuitive interpretation
of the label propagation also offers GSSL more expansibility
and many novel graph models have been recently proposed,
such as hypergraphs for modeling higher-order relevances
[51], and multigraphs for integrating multi-view features
[43].

Despite the success in a variety of applications, the
traditional GSSL approaches have a bottleneck in dealing
with large-scale data. They face a quadratic complexity in
graph construction. In addition, denoting N as the number
of datapoints, the optimal solution of GSSL requires the
inversion of a graph Laplacain matrix with the size N x N
[53], which requires a computational cost of O(N?). The
costs thus become impractical for large-scale datasets.

labels. In recent years, various SSL methods have been
developed, such as mixture methods [6], co-training [4],
[48], semi-supervised support vector machines [7], [18], and
graph-based methods [1], [35], [53].

In this paper, we focus on Graph-based SSL (GSSL),
which is one of the most successful SSL approaches and
shows the state-of-art performance in many areas [29], [45],
[54]. In general, GSSL first constructs an adjacency graph
to capture the data distribution for all datapoints, where
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Recent works seek to employ anchors to build fast
graph-based learning methods [23], [42], [47]. Here anchors
refer to the points that roughly cover the data distribution
in a feature space'. Specifically, these methods first estimate
the inter-layer adjacency weights between datapoints and
anchors, and then infer the labels of datapoints from these
anchors. Consequently, they reduce the scale of the matrix
inversion to the size of the anchor set and correspondingly
speed up the optimization. However, to guarantee classifi-
cation accuracies, anchors in these approaches need to be
dense when the data distribution is complex, which leads to

!Throughout the manuscript, we call the space of the raw data rep-
resentation as “feature space”, and the one spanned by the eigenvectors
of Graph Laplacian as ”spectral space” [31].
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Fig. 1. An illustrative example of FLAG, where the labels of the coarsest anchors are first obtained based on their spectral representations with
an anchor label predictor, and then spread to datapoints in a coarse-to-fine manner with the inter-layer adjacency matrices. Note that owing to the
nonlinear spectral embedding, the linear predictor in FLAG actually corresponds to a nonlinear classification boundary in the feature space.

huge computational costs for large-scale datasets. Recently,
a hierarchical anchor graph model with a pyramid-style
structure is proposed in [41], which explores multiple-layer
anchors to perform hierarchical label inference layer by
layer. As a result, this approach can enlarge its finest anchor
layer to improve classification performance. However, since
the labels of all datapoints are essentially inferred from the
coarsest anchors, to obtain a high accuracy, the number
of these anchors still needs to be large. Like the pervious
approaches, the computational complexity for optimizing
their labels can be increasingly expensive. Therefore, these
fast anchor-based methods are still insufficiently efficient to
handle large-scale datasets with complex data distributions.

To address this issue, in this paper we develop a novel
approach called Faster Learning on Anchor Graph (FLAG),
which further scales up anchor-graph-based methods. As
illustrated in Fig.1, instead of directly optimizing the la-
bels of the coarsest anchors in hierarchical anchor graph
models?, we estimate their labels with a predictor and
optimize the predictor in a hierarchical-anchor-graph-based
regularization framework. To keep computational efficiency,
we need to employ a linear predictor with a small hypoth-
esis space. Therefore, we first design a sparse intra-layer
adjacency matrix over the coarsest anchors with anchor
hierarchy. Then we perform spectral embedding on these
anchors and build their low-dimensional but discriminative
spectral representations. In this way, the optimization can
be computed with the matrix inversion, where the matrix
size is just equivalent to the dimensionality of the spectral
representation.

The rest of this paper is organized as follows. In Section
2, we briefly review related work on graph-based learning
algorithms. In Section 3, we introduce the formulation of the
anchor-based learning framework and analyze its dilemma.
We propose our faster learning approach in Section 4. In

2Note that we may not further discriminate anchor graphs and
hierarchical anchor graphs, as anchor graph is actually just a case of
hierarchical anchor graph with an individual anchor layer.

Section 5, we make comparisons with other approaches. We
finally conclude this paper in Section 6.

2 RELATED WORK

In this section, we focus on the related work on improving
the efficiency of GSSL from two aspects, namely, graph
construction and model optimization.

To reduce the time cost in the first aspect, many fast
graph construction approaches have been developed. Chen
et al. [8] first proposed to construct an approximate kNN
graph for high-dimensional data via recursive Lanczos bi-
section. To deal with arbitrary similarity measures, Dong
et al. [10] subsequently presented a simple but efficient
solution based on local search algorithms. In [39], Wang et
al. also proposed a multiple random divide-and-conquer ap-
proach for the graph construction and additionally present-
ed a neighborhood propagation scheme to improve its effec-
tiveness. To deal with the data distributed over commodity
clusters, Goyal et al. [13] proposed a distributed online
approaches based on sketching algorithms, and introduced
it into natural language processing. Besides, Wang et al. [40]
employed parallel auction algorithms to recover a sparse
yet nearly balanced subgraph for social networks, which
significantly reduces computational costs. As a powerful
method, Approximate Nearest Neighbor Searching (ANNS)
is also used to build big graphs. For example, Zhang et
al. [49] employed Locality-Sensitive Hashing into the graph
construction. Wang et al. [41] introduced a tree-based ANNS
algorithm [30] to accelerate their weight estimation.

In spite of the progress in the fast graph construction,
most GSSL methods remain challenging due to their cubic
computational complexity in the optimization. To address
this issue, Tsang et. al [37] introduced an e-insensitive con-
straint into traditional LapSVM problems [27]. As a result,
its optimization turns to a minimum enclosing ball problem
and can be solved with core vector machines [38]. However,
to obtain a satisfying accuracy, € needs to be small, which
makes this method close to the original LapSVM with a
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TABLE 1
Notations and definitions
Notation | Definition
G— (XU, 2} A hierarchical anchor graph model, where X" and ¢/ indicate the sets of datapoints and anchors, respectively,
T and Z indicates the set of inter-layer adjacency edges between different sets of points.
No The number of datapoints.
C The number of classes.
l The number of labeled datapoints.
h The number of anchor layers.
r The bth layer in the pyramidal graph structure, where Lo is the layer of raw data and £,(b > 1) denotes
b the b-th anchor layer.
Ny The number of anchors in £;(b > 1).
Zb The inter-layer adjacency matrix between £, and Ly.
z&b The inter-layer adjacency weight between point i in £, and point s in Ly.
w The intra-layer adjacency matrix over all datapoints.
A The diagonal matrix of the degrees of the finest anchors.
A The soft label matrix of the coarsest anchor set.
F The soft label matrix of the datapoint set.
YL The class indicator matrix on labeled datapoints.
L The reduced Laplacian matrix in regularization.
z" The cascaded inter-layer adjacency matrix of a hierarchical anchor graph.
P The linear label predictor on the spectral representation.
w The intra-layer adjacency matrix over the coarsest anchors.
b The diagonal matrix of the degrees of the coarsest anchors.
U The the spectral representations of the coarsest anchors.

huge cost. Chen et al. [9] presented a method to combine an
original kernel with the adjacency graph for scalable mani-
fold regularization, whose cost is still larger than square in
practice. Meanwhile, since the above algorithms are mere-
ly designed for binary classification, they can only learn
individual classifiers for different classes. Benefitting from
the development of parallel computation platforms, such as
Mapreduce, many parallel algorithms are also proposed to
accelerate the model optimization [2], [26], [33].

More recent works seek to employ anchors for scaling up
graph-based learning, which can reduce the computational
costs of both the graph construction and the model opti-
mization. Zhang et al. [46], [47] first suggested employing
a set of anchors to perform a low-rank approximation of
a data distribution and span an effective model for label
reconstruction. However, since it requires a dense weight
matrix to build the relationships between each datapoint
and all anchors, its storage requirement becomes impractical
for large-scale datasets. Liu et al. [23], [24] then presented
anchor graph models by constructing the inter-layer edges
between datapoints and their nearby anchors. Besides, they
also introduced a geometric reconstruction method for their
weight estimation to improve its effectiveness. In [42], Wang
et al. improved the efficiency of the reconstruction problem
by introducing a new constrict, and alternatively proposed
to build an intra-layer adjacency matrix over anchors rather
than datapoints. Nevertheless, to obtain a reasonable accu-
racy, a large-size anchor set is required. As a consequence,
the computational costs of the geometric reconstruction and
the model optimization can be expensive. Wang et al. [41]
therefore extended anchor graph models into a pyramid-
style structure by exploring multiple anchor sets, which can
improve the classification accuracy by introducing a finer
anchor set while fixing the size of the coarsest anchor set.
As a result, it carries out hierarchical label inference from

the coarsest anchors in a coarse-to-fine manner, and its
optimization only involves the inversion of a matrix with
the size of the coarsest anchor set. Although the size of this
coarsest anchor set can be forced to be small for a lower
complexity, the classification performance will accordingly
become worse. To obtain a high accuracy, the number of
these anchors still need to be relatively large, and the time
cost can be expensive.

3 ANCHOR-GRAPH-BASED LEARNING

In this section, we first review the traditional fast learning
approaches built upon anchor graph and hierarchical anchor
graph models, and then make an analysis on their dilemma.
For convenience, some important notations used through-
out the paper and their explanations are listed in Table 1.

Given a dataset X' = {x1;X2;...;Xn,} € RV*P with
the first [ samples being labeled from C' distinct classes,
these approaches aim at classifying the remaining unlabeled
data according to their dependence on a hierarchical anchor
graph. For this purpose, multiple sets of representative
anchors U, € RM*P(h =1,..., h) with fine-to-coarse sizes,
namely N; > --- > N, are first generated. These anchors
can be obtained by a clustering process or a random selec-
tion [23]. Then suppose the raw datapoint set locates at the
bottom layer (L) of the pyramid, and the remaining layers
(Ly,b=1,...,h) are all composed of multiple anchor sets.
A hierarchical anchor graph can be constructed by linking
all these layers up to a pyramid-style structure with the
inter-layer adjacency matrices between neighboring layers,
represented by {Z%1, ... Zh=1LIY,

For simplicity, we first consider the inter-layer adjacency
matrix between the datapoint set in £ and the finest anchor
setin £1, namely Z01 € RNox N1 The entries in the i-th row
of this matrix are the weights between the i-th datapoint and
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Fig. 2. The toy examples with increasing complexities of data distributions. For each datapoint, we only show its inter-layer adjacency edge with the
largest weight in the corresponding anchor graph (h = 1). Note that we increase Ny by 2,22, ..., until all the edges are "reliable”. As we can see,
compared with Gaussian data (a), when data distributions become more complex (b-c), more anchors are needed to build the “reliable” inter-layer

adjacency edges between datapoints and anchors in the same class.

its nearest anchors in £, which can be determined by the
kernel regression [12]:

K 4 (Xia us)
Zs’€<i> K5(Xi7 us’)
where § is the bandwidth of the Gaussian kernel, and the
notation (i) C [1 : N;] denotes the indices of the k closest
anchors of x;. Then we can conduct the similar kernel
regression procedure to estimate the remaining inter-layer
adjacency matrices. That is, to obtain Z’~* between two
neighboring anchor layers, we have:

Ks(ui, u,)
Zs’e(i) Ké(uiy us’)

0,1 _
Zis -

Vs € (i), (1)

b—1,b
Zis -

Vse (i), 1<b<h
2)

where u; is the i-th anchor in £;_; and u, denotes the
s-th anchor in L. In practice, for large-scale datasets, we
can speed up the adjacency matrix estimation with ANNS
techniques [30]. As such, the time cost of hierarchical anchor
graph construction can be reduced to O(NylogN1 D).

Let A = [aj;a;...;ay,] € RV=XC denote the opti-
mized label matrix of the coarsest anchor set in L. With
the anchor hierarchy, the label matrix of the datapoint set
F € RYoXCcan be inferred from this anchor set in a coarse-
to-fine manner:

F=2z%(. (z"'"A))=2ZHA, @)

where ZH denotes the cascaded inter-layer adjacency matrix
between the data layer and the coarsest anchor layer. As
pointed in [41], this adjacency matrix naturally introduces
adaptive inter-layer adjacency relationships between each
datapoint and its nearby coarsest anchors.

Meanwhile, an intra-layer adjacency matrix over data-
points, represented by W, can be obtained based on the
inter-layer adjacency weights between Ly and £;:

W — ZO71A_1ZO71T c RNOXNO’ )

where A is a diagonal matrix with Ay, = vazf’l ZZ(-) 5’1. As we
can see that, W;; > 0 means two datapoints share at least
one finest anchor.

Let YL = [y1;...;yi] € R'XY denote the class indicator
matrix on labeled datapoints, where y;,, = 1 if x; belongs

to class r, and y;, = 0 otherwise. To deal with a standard
multi-class SSL problem, Hierarchical Anchor Graph Reg-
ularization (HAGR) [41] is formulated by minimizing the
following problem:

! No
2 A 2
Qa=> | ZIA -y t3 > Wiyl ZEA - ZFA |
i=1 ij=1

— |ZHA — Y1 |5 + Mr(ATZHT (T - W)ZHA)

= |ZFA — Y |5 + Mr(ATLA),
©)
where || - || stands for the Frobenius norm, A is the trade-
off parameter balancing different terms, Z! is the labeled
part of ZH, and

L=2z" 70—z 0 A 1701z e NN ()

With the native spare matrix multiplication [44], the cost of
Eq.6 scales as O(NoNypk) , as all the inter-layer adjacency
matrices in Z%, namely Z"~1s, are k-sparse.
Differentiating QO with respect to A and setting it to
zero, we can obtain an optimal solution in the closed-form:

~ —1
A=z ZE 10D Z."YL. @)

Evidently, this matrix inversion takes a cost of O(NhS),
namely, a cubic cost with respect to the number of the
coarsest anchors.

Note that when the above hierarchical anchor graph
model becomes an anchor graph with an individual anchor
layer, namely h = 1, HAGR degrades to the Anchor Graph
Regularization (AGR) method [23].

The above fast anchor-based approaches have shown
their promising results for large-scale SSL. However, accord-
ing to Eq.3, the effectiveness of the label inference highly de-
pends on the distribution of the coarsest anchors. To obtain
a high accuracy, the cascaded inter-layer relationships are
supposed to be “reliable”, namely, connections only exist
between the datapoints and the coarsest anchors within
the same class. For this purpose, when a data distribution
becomes more complex, the required number of the coarsest
anchors will increase dramatically. To make it intuitive,
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Figs.2a-2c illustrate this observation by increasing the com-
plexity of the data distribution (for simplicity, we construct
anchor graphs with h=1). As we can see, to build “reliable”
inter-layer edges, two anchors are sufficient for the example
in Fig.2a. However, for the examples in Fig.2b-2c, more
anchors are clearly needed. According to Eq.7, it can lead
to a large computational burden in the model optimization
[41]. In summary, since a large-size coarsest anchor set is
required for obtaining a high accuracy, AGR and HAGR
still face a dramatic increase of the computational cost for
optimizing their labels.

4 FASTER LEARNING ON ANCHOR GRAPH(FLAG)

To address the above issue, we propose the FLAG model.
It employs a label predictor on the spectral representations
of the coarsest anchors to estimate their labels, which is op-
timized in a regularization framework over all datapoints.
We first propose the formulation of learning with an anchor
label predictor in Section 4.1. We introduce the efficient
estimation of spectral representations by employing a sparse
intra-layer adjacency matrix over anchors in Section 4.2. The
complete FLAG model and its optimization are presented in
Section 4.3, followed by a complexity analysis in Section 4.4.

4.1 Learning with Label Predictor Optimization

Instead of directly optimizing the labels of the coarsest
anchors, we estimate the labels of these anchors with a label
predictor. Let U = [uy;...;uy, ] € RV»*D denote the raw
representation of the coarsest anchor set. Then based on the
anchor label predictor p : RP — R, the soft label matrix
of this anchor set can be obtained as [p(u1);...;p(un, )] €
RN %€ Note that in HAGR, p(U) = A.

Recall a standard multi-class SSL problem, where a set
of labeled datapoints x; (i = 1,...,l) with the corre-
sponding discrete labels y; € {1,...,C} is given and the
goal is to estimate the labels of the remaining unlabeled
datapoints. Let Y; = [y1;y2;...;y1] € R denote the
class indicator matrix of the labeled data with Y;; = 1 if
x; belongs to class j and Y;; = 0 otherwise. Meanwhile,
similar to HAGR, we denote W as the intra-layer adjacency
matrix over datapoints, and Z* as the cascaded inter-layer
adjacency matrix of a hierarchial anchor graph. Then, the
regularization framework of learning with an anchor label
predictor can be formulated as the following minimization
problem:

l
. 2
argmin, O, = > |Z{'p(U) — yillp + 1Q(p)
i=1

. ®)
A H H 2
+5 3 Wll2!s(U) - Zip(U)l;.
1,)=
where () denotes a regularizer on the label predictor,
and p is the corresponding trade-off parameter. As a result,
compared with HAGR where a large number of soft labels
need to be learned, Eq.8 only needs to optimize a label
predictor.
However, the raw representation in the feature space
is usually insufficiently powerful to capture the similarity
between anchors, and may lead to a poor performance

5

for the following label prediction. Therefore, there are two
issues left: (1). how to get effective representations of these
coarsest anchors, and (2). how to optimize the correspond-
ing predictor with a faster solution. We address them in
Section 4.2 and 4.3, respectively.

4.2 Efficient Estimation of Spectral Representations

In this section, we introduce how to efficiently estimate a
discriminative representation of the coarsest anchor set via
spectral embedding.

For this purpose, we first consider the issue of construct-
ing an intra-layer adjacency matrix W over the coarsest an-
chors, aiming at performing an efficient spectral embedding
procedure on these anchors while improving effectiveness.
Although there exists a similar method for building the
adjacency relationships between these anchors based on
an anchor graph [42], our intra-layer adjacency matrix is
actually quite different.

First, we determine the relationships of the coarsest
anchors with the anchor hierarchy if a hierarchical anchor
graph consists of multiple anchor layers. In particular, we
employ the cascaded inter-layer adjacency matrix Z" to es-
timate the intra-layer weight between the coarsest anchors:

No
Wi; = 2525 €)
s=1

According to Eq.9, once two coarsest anchors share at least
one common datapoint based on the cascaded inter-layer
adjacency relationships, there will be an intra-layer adjacen-
cy edge between them. Meanwhile, if a hierarchical anchor
graph only contains an individual anchor layer, this step
degrades to the same situation in [42].

The above adjacency relationships can also be expressed
in a matrix form:

W = ZHTZH ¢ RNwxNn, (10)

which can be efficiently computed in O(NoNpk).

Second, we impose a strict sparse constraint on the above
intra-layer adjacency matrix. Since Eq.10 accumulates all
the nonnegative intra-layer adjacency weights, the obtained
adjacency matrix is usually dense, which will slow down
the spectral embedding. Therefore, we further prune this
intra-layer adjacency matrix by forcing it to be k-sparse:

Wi; = { (I)/V“
where we define the closeness according to their accumu-
lated adjacency weights rather than the Euclidean distance.
Practically, we first retain the adjacency edges with the &
largest weights for each coarsest anchor, and then make
them undirected. We can thus obtain a sparse and symmet-
ric adjacency matrix, where only the elements correspond-
ing to the anchors with large correlations are reserved.
When two coarsest anchors are close to a classifica-
tion boundary but locate at different classes, the above
pruning operation can remove their intra-layer adjacency
relationship and accordingly improve the effectiveness of
the intra-layer adjacency matrix. It is understandable that,
as the data density between different classes is much lower

if u; and u, are “close”,

otherwise. (11)

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2757522, IEEE

Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA

than that within the same class, the accumulated intra-layer
adjacency weight of this suspicious adjacency edge tends to
be much smaller than those within the same class. In the
experimental section, we will compare the above intra-layer
adjacency matrix with the one built upon the RBF kernel
under the different settings of graph structures.

Now we look back to the remaining issue of performing
the spectral embedding on the coarsest anchors to obtain
their representations in a spectral space. Donate ¥ as a
diagonal degree matrix with ¥;; = Z;\L’l Wij. Then the
embedding can be formulated as

u;

- 2
. 4 u;
argmin » Wi||l——=—= — l, (12)
%: VRV

where 1; is the spectral representation of the coarsest anchor
u;. According to Eq.12, a pair of anchors with a small
intra-layer adjacency weight will have dissimilar spectral
representations, and otherwise, their representations tend
to be similar.

Let U = [ay;...;uy,] € RV**4 denote the optimized d-
dimensional representation of the coarsest anchor set, where
each row is the spectral representation of a coarsest anchor.
Meanwhile, denote S = 2 2WX % as the normalized
intra-layer adjacency matrix over the coarsest anchors. Then
the spectral-representation matrix U can be obtained ac-
cording to the following optimization problem:

argminﬁij(I -S)U 13)
st UTU =1
which is solved by combing the d smallest eigenvectors of
the matrix (I —S) [31]. Based on Arnoldi technique [21],
the time cost of calculating the first d eigenvectors via Eq.13
scales as O(Npkd), where k is the average number of non-
zero entries in each column of this matrix. Of note, the first
eigenvectors reflect the main structure of data distributions,
and the remaining ones indicate the small difference or the
noise. As a result, we can obtain the discriminative spectral
representation of this coarsest anchor set with a small num-
ber of eigenvectors, which insures its low dimensionality.
When the intra-layer adjacency matrix over the coarsest
anchors is “ideal” (which means the coarsest anchors in
different classes have zero weights with each other, and
those within the same class have large weights with each
other), we can employ their spectral representations with C
eigenvectors for C-classes, namely, we have d = C. Even
this adjacency matrix is noisy in most real-world applica-
tions and more eigenvectors are required, the dimensional-
ity of the spectral representations can still be much smaller
than the size of the anchor set. Later in the experimental
section, we will empirically show both the effectiveness and
efficiency of the low-dimensional spectral representations .
Note that one can also conduct spectral embedding on
the datapoint set or another finer anchor set in a hierar-
chical anchor graph. Nevertheless, it will lead to a larger
computational cost for constructing the corresponding intra-
layer adjacency matrix and also slow down the spectral
embedding. On the contrary, the spectral representations of
the coarsest anchors can be efficiently computed. Besides,
as these anchors can roughly cover the data distribution,

6

based on the corresponding intra-layer adjacency matrix,
their spectral representations can still be discriminative .

4.3 Faster Optimization with a Linear Predictor

So far we have described how to efficiently estimate the
spectral representations of the coarsest anchors. Now we in-
tegrate these spectral representations into the regularization
framework on a hierarchical anchor graph, and propose the
complete FLAG model with a faster optimization.

Let 5 : RY — R denote the label predictor on the spec-
tral representation of the coarsest anchor set U € RV»*d,
The label matrix of this anchor set can be obtained as
p(U) € RV»*C To keep computational efficiency, we only
consider a linear predictor, represented by P. As such, we
can obtain the soft label matrix of the coarsest anchor set:

A = UP ¢ RV»*C, (14)

Of note, benefitting from the nonlinear embedding, this
simple label predictor can still classify the coarsest anchors
with a complex distribution in the feature space.

Then the label matrix on datapoints can be inferred by

F = Z"UP, (15)

where Z™ is the cascaded inter-layer adjacency matrix in
hierarchical anchor graph models. Compared with pervious
anchor-based methods [23], [42], [41], to eventually estimate
the labels of unlabeled datapoints, we only need to optimize
the above anchor label predictor, of which the size is propor-
tional to the dimensionality of the spectral representation
rather than the number of the coarsest anchors.

Now, by integrating the above linear label predictor into
the previous regularization framework, Faster Learning on
Anchor Graph (FLAG) can be finally formulated as the
following optimization problem:

!
. - 2 -2
argming O = ||Z'UP — yi|| " + pul|P[
i=1
\ Mo o o (16)
+5 > Wy ZEUP - ZPUP|
ij=1
Denoting Z} as the labeled part of Z!, we can rewrite
Eq.16 into the matrix form:
~ o~ 2 ~ o~
Qp = |[ZIUP — Yy + utr(PTP)
+Atr(PTOTZH (1 - W)ZHUP)
~ o~ 2 ~ o~ ~ o~ o~
= |ZFOP — Yy ||p + putr(PTP) + Atr(PTLP),

17)

where L is the reduced Laplacian over the spectral repre-

sentation:
I = fJTZHT(I _ ZO,lA—lzo,lT)ZHfJ c R9xd "
— Utz ZHG - OTzH 201 A 12017z, (9

With simple algebra, the optimization of the label pre-
dictor can be computed with a matrix inversion procedure:

~ ~ ~ —1 .
P = (UTZH"ZN0 + 1+ AL) UTzl'yy, (19

where the matrix size is equivalent to the dimensionality of
the spectral representation d. Compared with HAGR which
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TABLE 2
Comparison of time complexity of five graph-based methods.

Methods | Graph Construction | Model Optimization
LLGC O(NologNyD) O(Ng)

AGR, EAGR | O(NologN1D) O(NoN:k + N7)

FLAG O(NologN1 D) O(NoNipk + Nydk + Npd?)

Note that for each method, we have Ny > N1 > Nj, > d.

optimizes all the labels of the coarsest anchors via Eq.7, the
computation of Eq.19 can be more efficient, as d is practically
much smaller than the size of the coarsest anchor set NVy,.

Based on the optimized predictor, the soft label matrix
on datapoints F can be estimated by Eqs.14-15. Finally, we
can obtain a hard label for any unlabeled datapoint:

~ Fir .
Yi = argmaxré{l,...,c}?al =1+ 1a . '7NQC7

(20)
where 3, = 17F., is a normalization factor [53], and F., is
the rth column of F'.

4.4 Complexity Analysis

In this section, we summarize the steps of the proposed
approach and analyze their time complexities.

(1). Compute inter-layer adjacency matrices to build a
hierarchical anchor graph with Egs.1-2, and construct a
sparse intra-layer matrix over the coarsest anchors with
Egs.9-11. The computational cost of the former scales as
O(NologN;1 D), and the latter is O(NoNpk).

(2). Estimate the spectral representations of the coarsest
anchors with d eigenvectors, whose cost scales as O(Npdk).

(3). Calculate the reduced Laplacian in Eq.18 with
O(Nokd + Npd?), and carry out the graph regularization
via Eq.19 with O(d?).

(4). Predict the labels of the coarsest anchors with Eq.14
in O(N,dC'), and infer the labels of datapoints based on
Eq.15 in a coarse-to-fine manner, which scales as O(NokC).

Since we usually have Nj, > d > C, the total time
complexity of FLAG can be simplified to

O[No(10gN1 D + Nyk) + Nyd(k + d)).

Table 2 lists the time complexities of LLGC (Learning
with Local and Global Consistency [50], a typical graph-
based SSL method), AGR, EAGR ( [42], an improved AGR
method), HAGR, and FLAG, in which the ANNS-based
kernel regression [41] is applied into all these methods for
a fair comparison. From the table we can observe that,
although LLGC reduces its graph construction to a linear
complexity with respect to the data size, it still faces a cubic
cost for its matrix inversion during the optimization. To
obtain a high accuracy with more anchors, AGR and EAGR
also face a dramatic increase of the computational cost in
their model optimization. Then we focus on HAGR and
our FLAG. As both of them have the same procedures of
computing a series of inter-layer matrices and an intra-layer
adjacency matrix (in HAGR means the first term in Eq.6),
the comparison of the complexities comes from their rest

parts. As we can see from Eq.18 and Eq.6, the remaining
costs of calculating the reduced Laplacian in FLAG and
HAGR are O(Nokd + Npd?) and O(NyNpk), respectively.
Meanwhile, rather than conducting the matrix inversion
with a cost of O(N}), FLAG implements a spectral embed-
ding procedure with a linear complexity of O(Np,dk) on the
pruned adjacency matrix, and its optimization only involves
the matrix inversion on a d x d matrix with a cubic cost of
O(d?). Since d and k are much smaller than N}, we have
O(Nokd + Npkd + Npd*> + d®) < O(NoNpk + N7). As a
result, FLAG has a much less cost than HAGR and other
conventional fast learning approaches, and can efficiently
deal with large-scale datasets with more coarsest anchors.

5 EXPERIMENT

Now we investigate both the effectiveness and efficiency
of FLAG on real-world datasets. All the experiments are
implemented on a PC with E5-2620 v2 @2.10 GHz and 64G
RAM. Here we use the following five datasets with sizes
varying from thousands to millions. The descriptions of
these datasets are given in below, and some statistics of them
are listed in Table 3.

(1) FaceMIT: The FaceMIT data set [3] contains 6,977
training samples (2,429 positives, 4,548 negatives) and
24,045 testing samples (472 positives, 23,573 negatives). In
our experiment, we only employ the training set for binary
classification.

(2) Newsgroup: A tiny version of the 20newsgroups data,
with binary occurance data for 100 words across 16,242
postings. It is tagged the postings by the highest level
domain in the array ‘newsgroups’ [34].

(3) Extended MINIST: This dataset is widely used in many
large-scale graph-based works [14], [19], [24]. The original
MNIST dataset contains 70,000 samples of handwritten dig-
its from ‘0’ to "9’ [20]. Each of the ten classes contains about
7,000 samples, which are images centered in a 28 x28 field
by computing the center of mass of the pixels. This extended
dataset is constructed by translating the original images in
MNIST one pixel in each direction. As a result, there are
630,000 samples in 900 dimensions by using the normalized
grayscale values as features.

(4) Extended USPS: The USPS dataset is for hand-written
digits recognition and contains 7,291 training samples and
2,007 test samples of digit images. All the digits in the
training set of USPS are extended by shifting the 16 x 16
images in all directions for up to five pixels [38]. There are
882,211 samples in 676 dimensions in total. We directly use
the normalized grayscale values as features.
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TABLE 3
Details of the five databases used in our experiments.

| FaceMIT | Newsgroup | Extended MNIST | Extended USPS | MNIST8M

# of instances 6,977 16,242 630,000 882,211 8,100,000
# of categories 2 4 10 10 10
# of dimensions 361 100 900 676 784

(5) MNIST8M: This dataset has been used in [15], [22],
[25] to verify the efficiency of large-scale learning algorithm-
s. It contains totally 8,100,000 samples in 784 dimensions.

For convenience, these datasets are categorized into
small, medium and large sizes. Specifically, we regard
FaceMIT, and Newsgroup as small-size datasets, Extended
MNIST, and Extended USPS as medium-size datasets, and
MNIST8M as a large-size dataset.

5.1 Comparison to State-of-the-art Approaches

We compare FLAG with several state-of-the-art fast learning
approaches, such as AGR, EAGR and HAGR, to demon-
strate its efficiency and effectiveness. We also report the
performances of two baseline methods including 1NN, and
linear SVM. The methods for comparison are described in
below.

(1) INN: It determines the label of an instance by refer-
ring to its nearest datapoint in the labeled set.

(2) LSVM [11]: We use the Linear SVM implementation
from LIBLINEAR, which is a library for large-scale linear
classification.

(8) LLGC [50]: This typical graph-based method directly
optimizes the labels of datapoints. In our experiments, we
employ a kNN strategy for its graph construction.

(4) AGR-N; [23]: It is the original anchor-graph-based
learning method with an individual anchor layer (h = 1),
where N; is the number of anchors. Of note, this method
can be viewed as a reduced version of HAGR.

(5) EAGR-N; [42]: Compared with AGR-Ny, it remodi-
fies the regularizer by constructing a smoothness constraint
on the labels of anchors.

(6) FLAG-N;: Compared with AGR-Ny, it first imposes
a strict sparse constraint on the intra-layer adjacency matrix
over anchors to obtain their spectral representations, and
then introduces a linear predictor to estimate the labels of
these anchors. As a simplest version of the FLAG method,
it is proposed to verify the efficiency of learning an an-
chor label predictor for small-size datasets and show the
effectiveness of adding a finer anchor layer for larger-size
datasets.

(7) HAGR-Nj-. . .-Ny, [41]: This HAGR approach is built
upon a hierarchical anchor graph with h(h > 1) anchor
layers, where Ny(b = 1,...,h) denotes the scale of the b-th
anchor layer. Compared with method (4), it infers the labels
of datapoints in a coarse-to-fine manner.

(8) FLAG-Nj-. . .-Ny: Different from method (7), it inte-
grates an anchor label predictor with the hierarchial label
inference to estimate the labels of datapoints. Meanwhile,
compared with method (6), the spectral representations of
the coarsest anchors here are obtained based on their sparse
intra-layer adjacency matrix, which is built upon the anchor

hierarchy. This approach is designed for classification on
medium-size and large-size datasets.

For a fair comparison, the kernel widths (J) in above
approaches are set by cross validation, and the trade-off
parameters (A and p) are tuned to their optimal values.
Besides, we empirically choose sparse parameters (k) from
2 to 6 for all approaches.

5.1.1 Small-Size Datasets

We first conduct experiments on FaceMIT and Newsgroup.
As the sizes of these datasets are small, we only build anchor
graphs with an individual anchor set, where N1=2,000 and
N1=3,000 are used for FaceMIT and Newsgroup, respec-
tively. We perform FLAG on these anchor graphs with the
optimized d chosen from 1 to 30. We vary the number
of labeled samples in {2,4,...,10} per class. The average
classification accuracies over 20 trials are reported in Table 4
and 5, where the time costs with 10 labels per class are listed
at the last column.

From the tables, we obtain the following observations.
First, the accuracies of all graph-based SSL approaches stay
at a higher level than those of LSVM and 1NN, especially
when the number of labeled datapoints is small, which
demonstrates the importance of leveraging unlabeled data
in SSL. Second, benefitting from anchor-based label infer-
ence, both AGR-N; and EAGR-N; reduce the time cost to
a much lower level than LLGC. However, compared with
LLGC, their classification accuracies can be worse in some
cases. Third, FLAG-N; performs SSL with the smallest time
cost, and consistently obtains higher accuracies than other
three approaches. These results demonstrate the superiority
of FLAG-N; for scaling up graph-based learning.

5.1.2 Medium-Size Datasets

For two medium-size datasets, we first follow [23] and
perform PCA to reduce the original image dimensions to
86. Then for each of them, we construct two anchor graphs
with N7 =5,000 and N;=20,000, and one hierarchical anchor
graph with N1=200,000, N2=20,000. We perform FLAG on
these graphs with the optimized d chosen from 10 to 300.
The number of labeled samples varies from {2,4,...,10}
and {20,40,...,100} per class for Extended MNIST and
Extended USPS, respectively. The average classification ac-
curacies over 20 trials are shown in Table 6 and 7, and the
time costs are reported at the last column.

From the results in these tables, the following observa-
tions can be made. First, compared with other approaches
under the same anchor configurations, FLAG consistent-
ly obtains better performances with less time costs. This
result demonstrates both the efficiency and effectiveness
of our label predictor optimization. Second, anchor-graph-
based approaches with N; =20,000 almost obtain higher
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TABLE 4

The comparison of different approaches on FaceMIT.

Num of labels per class \ 2 \ 4 \ 6 \ 8 \ 10 \ Time cost (in second)
INN 55.36£10.66 | 64.91+10.26 | 68.29+7.45 | 68.92+5.59 | 72.36+5.45 0.03
LSVM 50.21£16.32 | 56.73+15.82 | 64.44+14.44 | 69.35£10.18 | 73.724+9.40 0.11
LLGC 71.43+12.23 | 83.37+8.85 | 85.36+£4.59 | 88.11+4.56 | 89.62+3.73 8.96
AGR-2,000 68.06+14.18 | 77.65£10,81 | 82.18+£5.86 | 86.86+5.18 | 87.60£5.88 0.85
EAGR-2,000 66.11+14.23 | 79.184+9.58 | 83.37+£6.50 | 85.31+£5.97 | 88.66+4.31 0.76
FLAG-2,000 80.43+14.41 | 86.06+£10.19 | 90.28+3.78 | 91.33+1.68 | 91.96+1.90 0.54

The best results are shown in bold. The last column shows time costs with 10 labeled data per class.

TABLE 5
The comparison of different approaches on Newsgroup.

Num of labels per class | 2 \ 4 \ 6 \ 8 \ 10 | Time cost (in second)

INN 33.30+£6.12 | 37.26£5.69 | 39.46£5.65 | 40.57+6.03 | 40.91+5.61 0.04

LSVM 40.42+5.77 | 48.07+£3.86 | 53.32+4.29 | 57.26+4.44 | 60.43£3.09 0.01

LLGC 52.12+6.67 | 57.48£3.75 | 59.85+2.92 | 60.02+£3.23 | 61.41+£2.42 85.73

AGR-3,000 54.55+£3.70 | 59.93£5.48 | 61.794£3.72 | 62.82+3.21 | 63.91+2.85 1.98

EAGR-3,000 54.36£6.86 | 59.39£6.55 | 61.67+4.39 | 62.69+3.00 | 63.21+2.69 1.85

FLAG-3,000 60.28+7.06 | 66.43+3.01 | 68.80£2.01 | 69.01+1.62 | 69.67+1.67 1.33

The best results are shown in bold. The last column shows time costs with 10 labeled data per class.

TABLE 6
The comparison of different approaches on Extended MNIST.

Num of labels per class \ 2 \ 4 \ 6 \ 8 \ 10 \ Time cost (in second)
INN 42.21+3.45 | 49.114+3.26 | 54.55+2.85 | 57.56+2.16 | 60.04+1.70 2.56
LSVM 45.74+2.49 | 51.96+3.13 | 56.44+2.65 | 59.784+2.77 | 61.79+1.96 3.15
AGR-5,000 79.474+2.20 | 83.11£1.89 | 85.77+2.20 | 87.53+£0.95 | 88.531+0.82 7.98
EAGR-5,000 79.76+1.86 | 83.82£1.91 | 86.92+1.37 | 88.72+£0.60 | 89.48+0.73 7.24
FLAG-5,000 85.15+2.70 | 89.27+3.00 | 91.24+1.59 | 92.404+0.39 | 92.57+0.29 5.81
AGR-20,000 79.15+£2.49 | 84.05+2.60 | 86.90+1.82 | 89.27+1.35 | 90.17£1.31 151.62
EAGR-20,000 79.184+2.51 | 84.41+£2.26 | 87.52+1.64 | 89.98+£1.10 | 90.86+1.10 150.04
FLAG-20,000 81.66+3.21 | 89.48+2.61 | 91.36+1.67 | 93.17+0.93 | 94.05+0.24 7.91
HAGR-200,000-20,000 | 83.01+2.18 | 87.46+£1.93 | 90.04+1.42 | 91.66+0.92 | 92.62+0.46 156.83
FLAG-200,000-20,000 87.78+1.97 | 92.42+1.83 | 94.01£1.38 | 95.02+0.39 | 95.07+0.34 14.98

The best results are shown in bold. The last column shows time costs with 10 labeled data per class.

TABLE 7
The comparison of different approaches on Extended USPS.

Num of labels per class \ 20 \ 40 \ 60 \ 80 \ 100 \ Time cost (in second)
INN 45.9441.38 | 56.58+0.52 | 62.03£0.58 | 66.40+0.56 | 69.251+0.51 3.65
LSVM 22.57+1.40 | 24.73£1.01 | 25.554+0.52 | 26.944+0.59 | 27.52+1.19 4.75
AGR-5,000 73.13+1.37 | 78.98+0.82 | 81.48+0.83 | 83.61+0.45 | 84.63+0.32 9.49
EAGR-5,000 76.19£1.38 | 82.29+£0.59 | 83.63£0.69 | 85.90+0.48 | 86.58+0.40 8.65
FLAG-5,000 80.40+1.83 | 84.84+0.23 | 86.12+0.63 | 87.01+0.48 | 87.70+0.24 7.35
AGR-20,000 75.69+1.01 | 81.57+1.42 | 83.92+1.61 | 86.35+0.75 | 87.2040.48 159.90
EAGR-20,000 77.61+£1.27 | 84.09+0.95 | 86.11£0.67 | 88.18+0.44 | 88.8940.27 158.48
FLAG-20,000 80.55+1.55 | 86.39+0.84 | 88.224+0.80 | 89.87+0.65 | 90.71+0.44 21.87
HAGR-200,000-20,000 79.92+1.08 | 85.87+0.96 | 87.85+£0.59 | 89.78+0.66 | 90.65+0.71 167.68
FLAG-200,000-20,000 84.71+1.50 | 89.52+0.41 | 90.68+0.40 | 91.53+0.33 | 92.07+0.48 28.91

The best results are shown in bold. The last column shows time costs with 100 labeled data per class.
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TABLE 8
The comparison of different approaches on MNIST8M.

Num of labeled per class \ 2 \ 4 \ 6 \ 8 \ 10 \ Time cost (in second)
1NN 41.80+£3.44 | 51.894+3.58 | 56.154+2.41 | 59.57+2.14 | 61.87+1.28 35.13
LSVM 45.08+4.19 | 54.694+2.45 | 56.23+2.52 | 59.50+1.45 | 61.66+1.19 39.82
AGR-5,000 76.53+4.15 | 81.99+2.98 | 83.22+1.66 | 83.94+£1.94 | 85.02+1.48 81.26
EAGR-5,000 79.46+4.02 | 84.84+4.02 | 86.63+2.39 | 87.24+2.87 | 88.48+£1.59 80.09
FLAG-5,000 81.25+4.40 | 86.92+1.36 | 89.14+1.63 | 89.774+1.25 | 90.724+0.90 76.25
AGR-30,000 79.50+3.57 | 86.83+3.14 | 89.26+2.39 | 89.92+1.96 | 90.54+0.97 663.75
EAGR-30,000 79.77+3.19 | 87.17+2.45 | 89.64+1.93 | 90.27+1.25 | 90.91+0.89 661.31
FLAG-30,000 81.55+4.11 | 87.51+£2.63 | 89.84+1.44 | 90.46+1.47 | 91.854+0.89 102.41
HAGR-300,000-30,000 83.24+3.89 | 88.29+£1.86 | 89.87£1.79 | 90.73+1.45 | 91.96+1.09 705.68
HAGR-300,000-30,000-5,000 | 82.2743.74 | 87.504+2.07 | 89.394+2.27 | 90.32+1.78 | 91.49+1.16 137.15
FLAG-300,000-30,000 85.84+4.21 | 91.12+1.92 | 92.24+1.19 | 92.77+0.69 | 93.40+0.20 134.58

The best results are shown in bold. The last column shows time costs with 10 labeled data per class.

accuracies than those with N;=5,000, which shows the
importance of employing a large anchor set. Third, by
adding a larger anchor layer, HAGR-200,000-20,000 achieves
higher classification accuracies than AGR-20,000. However,
its performances are only comparable or even worse than
those of FLAG-5,000 on Extended MNIST and FLAG-20,000
on Extended USPS. Forth, based on the anchor hierarchy,
FLAG-200,000-20,000 improves its adjacency relationships
and consistently outperforms all other methods with the
efficient implementation.

5.1.3 Large-Size Dataset

We further test the scalability of FLAG on a large-size
dataset, namely MNIST8M. In particular, we build two
anchor graphs with N;=5,000 and N;=30,000. Besides, we
construct two hierarchical anchor graphs with N;=300,000,
N3=30,000 and N1=300,000, N2=30,000, N3=5,000. By re-
peating the similar evaluation process, we report the av-
erage classification accuracies over 10 trials in Table 8.

Similar to the results of the above experiments, we can
see that, based on the same anchor configuration, FLAG
consistently outperforms other fast learning approaches
with different numbers of labeled samples in terms of both
the efficiency and effectiveness. We also observe that, by
adding a small anchor layer, the time cost of HAGR-300,000-
30,000-5,000 is much smaller than that of HAGR-300,000-
30,000. However, the former sacrifices the accuracy at the
same time, and even results in slightly worse performances
than FLAG-30,000. In contrast, FLAG-300,000-30,000 obtains
much higher accuracies with less time costs.

It is worthwhile to note that in all the experiments above,
the accuracy of FLAG is much higher than that of HAGR
with the same graph structure, especially when the number
of the labeled data is small. The main reason is that, the
HAGR classifier employs the coarsest-anchor-based coding
as its input feature and requires the size of this anchor
set Nj, to be large for well capturing the data distribution.
In contrast, our FLAG classifier employs the spectral rep-
resentation with the dimensionality d as its input feature,
which can keep its hypothesis space in a lower level while
enlarging the scale of the coarsest anchor set. As both of
them actually assign labels based on linear decision surfaces
with the corresponding feature, their VC dimensions can be

easily obtained [28], namely Nj, + 1 for HAGR and d + 1
for FLAG. According to the computational learning theory
[5], to approximately learn a target function in a hypothesis
space, the number of required labeled datapoints is linear
with its VC dimension. Therefore, compared with HAGR
built upon the same hierarchical anchor graph, FLAG re-
quires less labeled data to well train the model itself. As
our work aims at the setting of semi-supervised learning
where only a few data are labeled, FLAG is a more powerful
approach to handle the large scale classification in terms of
both the effectiveness and efficiency.

5.2 On the Improvements of FLAG

So far, we can see that FLAG improves both the efficiency
and effectiveness of anchor-graph-based learning by opti-
mizing an anchor label predictor on the spectral represen-
tation. In this section, we further investigate how these
improvements are obtained based on the following aspects:
(1). the construction of the intra-layer adjacency matrix over
the coarsest anchors, and (2). the regularizer on the label
predictor.

For simplicity, we follow the settings in [37] and use
the dataset MNIST [20] for binary classification under two
settings: (1). the first 5 versus the last 5 digits in MNIST1,
and (2). the odd digits versus the even digits in MNIST2.

5.2.1 On the Intra-layer Adjacency Matrix Construction

In order to verify the first aspect, we define two intermediate
methods for a better comparison:

FLAGg,1: Compared with FLAG, this simplified version
does not implement the pruning operation on the accumu-
lated intra-layer matrix over the coarsest anchors. In other
words, it directly obtains their spectral representations by
performing spectral embedding with the original accumu-
lated intra-layer matrix.

FLAGgy2: Compared with FLAG, this simplified version
first constructs an intra-layer adjacency matrix over the
coarsest anchors with the RBF kernel and keeps the top
k values for each anchor. Then, it estimates the spectral
representations of these anchors by performing spectral
embedding with the adjacency matrix.

We fix p=0 and optimize A for a fair comparison. For
all the compared anchor-graph-based methods, we first
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Fig. 3. The accuracy variation with respect to the dimensionality of the spectral representation. Note the approaches in (a) and (b) are built upon
a hierarchical anchor graph (h = 1) with 5,000 anchors, and those in (c) are built upon a hierarchical anchor graph (h = 2) with 5,000 and 500
anchors.

TABLE 9
The comparison of time costs (in seconds) of different approaches (without the time cost of graph construction). Note that
the cost of calculating an intra-layer adjacency matrix over anchors, i.e., ZTZ, is nearly 0.05s.

Procedure step.1 step.2 step.3 step.4
spectral representation | reduced Laplacian | matrix inversion | label inference | total time

N1=5,000 estimation calculation cost
AGR-5,000 - 0.30 3.06 0.01 3.37
EAGR-5,000 - 0.08 3.06 0.01 3.15
FLAGq,1-5,000 (d=18) 1.37 0.07 0.01 0.01 1.46
FLAGgy2-5,000 (d=18) 0.20 0.07 0.01 0.01 0.29
FLAG-5,000 (d=18) 0.18 0.07 0.01 0.01 0.27

employ the same anchor graph model with 5,000 anchors.
We randomly sample 20 datapoints as the labeled part and
keep the rest unlabeled for the setting of SSL. The average
accuracy curves of AGR-5,000, EAGR-5,000, and FLAGgy;-
5,000, FLAGgy2-5,000, FLAG-5,000 with the varying dimen-
sionality of the spectral representation are shown in Fig.3,
and the time costs of different approaches (without the time
cost of graph construction) are listed in Table 9.

From the Fig.3, we can obtain the following observations.
First, by introducing a linear label predictor on the spectral
representations of anchors, FLAG-5,000 and FLAGgs,1-5,000,
FLAGgy2-5,000 can obtain better performances than AGR-
5,000. Second, benefitting from the strict sparse constraint
on the intra-layer adjacency matrix over anchors, FLAG-
5,000 obtains higher classification accuracies than FLAGgy;-
5,000. This result shows that the pruning operation can
remove most of suspicious edges and improve the effective-
ness of the intra-layer adjacency relationships, which is also
consistent with the observation that sparse graphs perform
better than dense graphs [52]. Third, although FLAG2-
5,000 employs a sparse intra-layer matrix over the coarsest
anchors for estimating their spectral representations as well,
its best accuracy is still worse than that of FLAG-5,000.
The main reason is that, when two anchors are close to a
classification boundary but locate at different classes, the
pruning operation in FLAG can remove this kind of intra-

layer adjacency edges as we mentioned in Section 4.2, which
accordingly improves effectiveness. In contrast, the intra-
layer adjacency relationships built upon the RBF kernel in
FLAGgy2 completely depend on the Euclidean distance, and
the above noisy adjacency edges are hard to be discovered
and filtered from the intra-layer adjacency matrix.

Taking into account the time cost in Table 9, the following
observations can be obtained. First, the time cost of EAGR-
5,000 is slightly smaller than that of AGR-5,000 (HAGR
with h = 1). It is understandable that when calculating
the reduced Laplacian matrix, AGR involves multiple times
sparse matrix multiplication and EAGR only involves the
operation one time [42]. Second, FLAG-5,000 and FLAGgyo-
5,000 are faster than FLAGgy1-5,000, as the time complexity
of the spectral embedding with a sparse matrix is much
smaller than the one with a dense matrix. Third, all three
FLAG-based versions carry out the inversion of a smaller-
size matrix, and are therefore more efficient than the tradi-
tional fast learning approaches, especially AGR (HAGR). It
is worthwhile to note that when the number of the coarsest
anchors increases for better capturing the data distribution,
the improvement of the efficiency will be more significant.

Moreover, for three FLAG-based versions, namely
FLAG, FLAG,;, and FLAGs,2, we additionally compare
their performances based on a hierarchical anchor graph, in
order to further demonstrate the effectiveness of our intra-
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layer adjacency matrix construction. For this purpose, we
repeatedly construct two-anchor-layer graphs for 10 times
with the sizes of 5,000 and 500, respectively. By 10 times
randomly sampling for building labeled data, the average
accuracies of three approaches built upon these graphs are
shown in Fig.3(c). As we can see, the best accuracies of
FLAG-5,000-500 are still higher than those of FLAGgy;-
5,000-500 and FLAGsy2-5,000-500 under two settings.

5.2.2 On the Predictor Regularizer

Finally we test the sensitivity of the weighting parameter x
on the predictor regularizer. We set other parameters to the
optimized values according to the experiments above. Then,
we vary u and the average classification accuracies over 10
trials are shown in Fig.4. As we can see, compared with the
accuracy where (1=0, this proposed regularizer can further
improve the performance of the anchor label predictor and
the classification accuracy stays at a high level over a wide
range of the parameter variation.

6 CONCLUSION AND FUTURE WORK

This work introduces a novel approach called Faster Learn-
ing on Anchor Graph (FLAG), which further scales up
anchor-graph-based models and meanwhile improves their
effectiveness. In FLAG, the labels of the coarsest anchors
are obtained by learning a linear predictor on their low-
dimensional spectral representations, which can be efficient-
ly estimated based on a proposed sparse intra-layer adjacen-
cy matrix over these anchors. To optimize the anchor label
predictor, we also develop a novel regularization framework
based on a hierarchical anchor graph. In this way, the
optimization can be computed with a faster matrix inversion
procedure, where the matrix size is only equivalent to the
dimensionality of the spectral representation. Furthermore,
owing to the flexible structure of hierarchical anchor graph
models, FLAG can be scaled to different scales of datasets,
including large-scale ones. The experiments on publicly
available datasets of various sizes have demonstrated this
superiority over the conventional fast learning models.
Finally, we discuss the possible research direction in
the future. In this work, we only employ a linear label
predictor on the spectral representation to keep computa-
tional efficiency. Differently, we may use more complex label
prediction models, such as deep neural networks. In this
way, we can build a hierarchical anchor graph model upon
a deep neural network, which leads to a semi-supervised
deep neural network training approach for large-scale data.
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