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Abstract—Several models have been proposed to cope with the rapidly increasing size of data, such as Anchor Graph Regularization

(AGR). The AGR approach significantly accelerates graph-based learning by exploring a set of anchors. However, when a dataset

becomes much larger, AGR still faces a big graph which brings dramatically increasing computational costs. To overcome this issue, we

propose a novel Hierarchical Anchor Graph Regularization (HAGR) approach by exploring multiple-layer anchors with a pyramid-style

structure. In HAGR, the labels of datapoints are inferred from the coarsest anchors layer by layer in a coarse-to-fine manner. The label

smoothness regularization is performed on all datapoints, and we demonstrate that the optimization process only involves a small-size

reduced Laplacian matrix. We also introduce a fast approach to construct our hierarchical anchor graph based on an approximate

nearest neighbor search technique. Experiments on million-scale datasets demonstrate the effectiveness and efficiency of the

proposed HAGR approach over existing methods. Results show that the HAGR approach is even able to achieve a good performance

within 3 minutes in an 8-million-example classification task.

Index Terms—Semi-supervised learning, graph-based learning, label smoothness regularization, label inference

Ç

1 INTRODUCTION

SEMI-SUPERVISED learning (SSL) methods [51], which
exploit the prior knowledge from unlabeled data to

improve classification performance, have been widely used
to handle datasets where only a portion of data are labeled.
Most of these methods are developed based on the cluster
assumption [47] or the manifold assumption [1]. The former
supposes that nearby points are likely to have the same
label, while the latter assumes that each class lies on a sepa-
rate low-dimensional manifold embedded in a higher
dimensional space. In recent years, various semi-supervised
learning methods have been developed under these
assumptions, including mixture methods [4], co-training
[2], semi-supervised support vector machines [18], and
graph-based methods [50].

In this paper, we focus on the family of graph-based
semi-supervised learning (GSSL) methods, where the label
dependencies among datapoints are captured by a weighted
graph. These methods first construct adjacency relation-
ships between all datapoints and then propagate labels
from labeled data to unlabeled data with the above

adjacency edges. Since many forms of real-world data, such
as handwritten digits, faces, medical data, and speech data,
exhibit such a kind of intrinsic graph structure, GSSL has
been applied to many applications, and achieves satisfying
performance [10], [41], [42]. Meanwhile, this roadmap can
be extended to building other advanced graph models, such
as hypergraph [17], [48] and multi-graph [7], [37], to
describe more complex relationships among real-world
entities like multimodal media contents [12], [13], [27].

In spite of the progress made in recent years, most GSSL
methods remain challenging mainly due to their cubic com-
plexity in optimization. Facing the ever increasing data size,
these approaches tend to be inefficient in dealing with
large-scale datasets. To address this issue, recent works
seek to employ anchors in scaling up graph-based learning
models, such as Anchor Graph Regularization (AGR) [23],
and Efficient Anchor Graph Regularization (EAGR) [36] (for
simplicity, we call both of them AGRwithout differentiation
except in comparative experiments). In these models,
anchors refer to the points that roughly cover the data distri-
bution. AGR then builds an anchor graph to model the
inter-layer adjacency between the data layer and the anchor
layer. For clarity, a few inter-layer edges in the anchor graph
built on a two-moon dataset are shown in Fig. 1a. The effi-
ciency of these approaches lies in two steps: 1) they build
the intra-layer adjacency relationships based on the anchors,
instead of computing all pair-wise adjacencies between the
datapoints in an exhaustive way; and 2) they infer the labels
of datapoints from the anchors based on their inter-layer
adjacency relationships. As the number of anchors can be
much smaller than datapoints, both the graph construction
and the learning process become much faster than those in
traditional graph-based approaches. However, to obtain a
reasonable accuracy, anchors need to be sufficiently
dense in order to build effective adjacency relationships.
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Therefore, when dealing with extremely large-scale data-
sets, the computational costs of existing anchor-graph-based
approaches will dramatically increase and become even
practically intractable. One possible way is to use only a
small number of anchors, but too sparse anchors will
degrade performance as the label inference and the label
smoothness regularization cannot be performed reliably.

To address this issue, in this paper, we introduce a novel
hierarchical anchor graph and develop a scalable SSL
approach named Hierarchical Anchor Graph Regularization
(HAGR). Different from the existing graphs, our proposed
graph contains multiple layers of anchors in a pyramid-style
structure. It consists of a layer of original datapoints and
multiple layers of anchors that describe the original data-
points from fine to coarse, as illustrated in Fig. 1b. Based on
the proposed graph model, we infer the labels of datapoints
from the coarsest anchors layer by layer based on inter-layer
adjacency relationships. Although the label smoothness reg-
ularization is performed on all datapoints, we demonstrate
that the optimization only involves a reduced Laplacian
matrix with the size of the coarsest anchor layer. Therefore,
the HAGR approach overcomes the limitation of anchor-
graph-based approaches and well compromises classifica-
tion performance and computational efficiency. The HAGR
approach is quite flexible, as we can set different layers of
anchors according to the scales of classification tasks. We
show that it will degrade to AGR when there is only one
anchor layer. In order to further improve the efficiency of the
construction of this hierarchical anchor graph, we also inves-
tigate an Approximate Nearest Neighbor Search (ANNS)
technique to build inter-layer adjacency relationships fastly.

The main contributions of our work are as follows.

1) We make a deep analysis on the existing anchor
graph and point out its limitations in dealing with
large-scale datasets. That is, AGR faces either an
intractable computational cost with dense anchors or
a degraded performance with sparse anchors.

2) We propose to build hierarchical anchor graph with
a pyramid structure, and develop a scalable classifier

based on it. The labels of datapoints are inferred
from the coarsest anchors layer by layer and the opti-
mization only involves a small-size reduced Lapla-
cian matrix. The proposed approach overcomes the
limitations of AGR and is able to efficiently accom-
plish large-scale classification with a good perfor-
mance (detailed computational costs will be shown
in Section 4.3).

3) We introduce a fast hierarchical anchor graph con-
struction process, in which the ANNS technique is
employed to build inter-layer adjacency relationships.

The rest of this paper is organized as follows. In Section 2,
we briefly introduce related work on the graph-based learn-
ing. In Section 3, we analyze the traditional AGR approach
and its limitations. The proposed approach is described in
Section 4. In Section 5, we validate our method and make
comparisons with other approaches on large-scale datasets.
We also evaluate different graph structures of HAGR to test
its flexibility as well as robustness. We finally conclude this
paper in Section 6.

2 RELATED WORK

Zhu et al. [50] first introduced the formulation of learning
problem based on a Gaussian random field, and analyzed
its intimate connections with random walks and spectral
graph theory. Zhou et al. [47] subsequently suggested an
effective algorithm to obtain the solution of a classification
function, which is sufficiently smooth with respect to the
intrinsic structure collectively revealed by known labeled
and unlabeled datapoints. Later, Zhu et al. [52] developed
an improved nonparametric kernel approach by incorporat-
ing order constraints during the convex optimization in
learning. Zelnik et al. [44] introduced a local scale in com-
puting the affinity between each pair of datapoints for the
weighted edge. Meanwhile, inspired by locally linear
embedding [31], many works that focus on improving the
weight estimation of the graph via sparse representation are
proposed. For example, Wang et al. [34] presented a linear
neighborhood model for label propagation, which assumes

Fig. 1. An illustrative example of anchor graph (consisting of 5,000 datapoints and an anchor layer with 250 anchors) and hierarchical anchor
graph (consisting of 5,000 datapoints, and multiple anchor layers with 1,000, 500, 250, and 100 anchors, respectively). For simplify, only a tiny frac-
tion of inter-layer edges are shown.
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that each datapoint can be linearly reconstructed from its
neighborhoods with l2 minimization. Similarly, Cheng et al.
[6] proposed a weight estimation method which optimizes
the sparse reconstruction coefficients on a l1 graph. Since
selecting local neighbors may lead to disjoint components
and incorrect neighbors in graph, Tian et al. [32] advocated
learning a nonnegative low-rank graph to capture global lin-
ear neighborhoods, under the assumption that each datapoint
can be linearly reconstructed from weighted combinations of
its direct neighbors and reachable indirect neighbors.

The above graph-based approaches show impressive
performances in various applications. However, they are
not sufficiently scalable, which imposes limitations in han-
dling larger datasets. With the rapid increase in data size,
researchers have paid more attention to designing novel
approaches to reduce the computational cost of graph-based
learning. Tsang et al. [33] formulated a sparsified manifold
regularizer as a center-constrained minimum enclosing ball
problem to produce sparse solutions with lower time and
space complexities. Wang et al. [35] proposed a multiple
random divide-and-conquer approach to construct an
approximated neighborhood graph and presented a neigh-
borhood propagation scheme to further enhance the accu-
racy. Chen et al. [5] presented a method to combine both the
original kernel and the graph kernel for scalable manifold
regularization.

More recent works seek to employ anchors in scaling up
the graph model. Different from the conventional graphs,
the anchor-based approaches build the adjacency relation-
ships between original datapoints based on anchors. Zhang
et al. [45], [46] first suggested using a set of anchors to per-
form an effective low-rank approximation of the data
manifold, and to span a model suffering the minimum
information loss. Liu et al. [23] first presented the anchor
graph model, and introduced it into the graph-based learn-
ing tasks. Wang et al. [36] subsequently proposed an
improved algorithm, which shows better performance and

computational efficiency. Compared with the conventional
graphs, these anchor-graph-based approaches can largely
reduce the complexity in graph construction, and have been
widely used in many applications [3], [20], [25], [38]. How-
ever, the two-layer anchor graph structure is still limited for
processing large-scale learning tasks, which will be ana-
lyzed in detail in the following.

3 ANCHOR-GRAPH-BASED LEARNING

In this section, we first present a brief description of the
anchor-graph-based approach and then give a detailed anal-
ysis on its limitations. For convenience, some important
notations used throughout the paper and their explanations
are listed in Table 1.

3.1 Formulations of AGR

We consider a standard multiclass SSL problem. Given a
dataset X ¼ fx1; x2; . . . ; xng 2 Rd�n with the first l samples
being labeled from c distinct classes, anchor-graph-based
methods start with clustering a set of representative anchors
U ¼ fu1;u2; . . . ;um1

g 2 Rd�m1ðm1 � nÞ, which share the
same feature space with original datapoints.

To be consistent with the notations in HAGR, here we let
L0 denote the layer of datapoints, and L1 denote the layer of
anchors, as illustrated in Fig. 1a. Different from the conven-
tional graph denoted by an n� n adjacency matrix, an
anchor graph G is represented by an n�m1 nonnegative
matrix Z0;1, which models inter-layer adjacency relation-
ships between points in L0 and L1. Specifically, the entries
in each row of Z0;1 are the weights between datapoint xi and
its k nearest anchors, which can be defined by Nadaraya-
Natson kernel regression [14]

Z0;1
is ¼ Ksðxi;usÞP

s02hii Ksðxi;us0 Þ
8s 2 hii; (1)

TABLE 1
Notations and Definitions

Notation Definition

G ¼ fX ;U; Eg An anchor graph or hierarchical anchor graph, where X and U indicate datapoints
and anchors, respectively, and E indicates the sets of inter-layer adjacency edges
between different sets of points.

h The number of anchor layers.

Lb The bth layer in the pyramidal graph structure, where L0 is the layer of original data
and Lbðb � 1Þ denotes the bth anchor layer.

mb The number of points in Lb.

Za;b The inter-layer adjacency matrix between La and Lb. By default, we have b ¼ aþ 1
for estimating the adjacencies between neighboring layers.

Za;b
is The inter-layer adjacency weight between point i in La and point s in Lb.

W The intra-layer adjacency matrix used in label smoothness regularization.
Lb The diagonal matrix of the degrees of the anchors in Lb.
A The soft label matrix of anchors.
F The soft label matrix of datapoints.
YL The class indicator matrix on labeled datapoints.
L The reduced Laplacian matrix in the anchor graph or hierarchical anchor graph.
n The number of datapoints.
c The number of classes in the dataset.
l The number of labeled datapoints in the dataset.
ZH The accumulated inter-layer adjacency matrix in the hierarchical anchor graph.
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where the notation hii � ½1 : m1� is the indices of the k clos-
est anchors of xi.

Given the labels of anchors and the above inter-layer
adjacency, the label of each datapoint can be estimated as a
weighted average of them, i.e.,

fðxiÞ ¼
Xm1

s¼1

Z0;1
is fðusÞ; (2)

where f is a prediction function that assigns each point a
soft label.

Then, to smooth these inferred labels, one can also con-
struct an intra-layer adjacency matrix of datapoints based
on inter-layer adjacency relationships

W ¼ Z0;1ðL1Þ�1
Z0;1T 2 Rn�n; (3)

where the diagonal matrix L1 is defined as L1
ss ¼

Pn
i¼1 Z

0;1
is .

From Eq. (3), we can see that, Wij > 0 means the two data-
points share at least one common anchor, and otherwise
Wij ¼ 0. It is likely that datapoints sharing common anchors
would have similar labels.

Let YL ¼ ½yT1 ; . . . ; yTl �
T 2 Rl�c denote the class indicator

matrix on labeled datapoints, where yir ¼ 1 if xi belongs to
class r, and yir ¼ 0 otherwise. Let A ¼ ½a1T; a2T; . . . ;
am1

T�T 2 Rm1�c denote the soft label matrix of the anchors in
L1. To deal with the standard multi-class SSL problem,
Anchor Graph Regularization [23] is formulated by mini-
mizingQA as

QA ¼
Xl

i¼1

k Z0;1
i	 A� yi k

2 þ �

2

Xn
i;j¼1

Wijk Z0;1
i	 A� Z0;1

j	 A k2; (4)

where � > 0 is the trade-off parameter balancing different
terms, and Z0;1

i	 is the ith row of Z0;1. From the above equa-
tion, we can see that, the labels of datapoints in both the fit-
ting and smoothness terms are inferred from the anchors.
Note that there are other alternative methods for manifold
regularization, such as [1], [5]. As it is not the main point of
this paper, we simply follow the idea of AGR.

Meanwhile, for the degree of each datapoint, we have

Dii ¼
P

j Wij ¼
P

sj Z
0;1
is ðL1

ssÞ
�1
Z0;1
js ¼

P
s Z

0;1
is ¼ 1. There-

fore, we obtain the diagonal matrix D ¼ I, and Eq. (4) is
reformulated into a matrix form as

QA ¼ kZ0;1
L A� YLk

2

F þ �trðATZ0;1TðI�WÞZ0;1AÞ

¼ kZ0;1
L A� YLk

2

F þ �trðATeLAÞ;
(5)

where Z0;1
L is the labeled part of Z0;1, and eL ¼ Z0;1TZ0;1�

ðZ0;1TZ0;1ÞðL1Þ�1ðZ0;1TZ0;1Þ 2 Rm1�m1 is the reduced Lapla-
cian matrix in AGR.

Differentiating QA with respect to A and setting it to
zero, we can obtain an optimal solution in the closed-form

A ¼ ðZ0;1
L

T
Z0;1
L þ �eLÞ�1

Z0;1
L

T
YL: (6)

Clearly, this matrix inversion takes a time cost of Oðm3
1Þ.

Finally, AGR employs the solved labels associated with
the anchors in L1 to infer the hard label of any unlabeled
datapoint in L0

byi ¼ argmaxr2f1;...;cg
Z0;1
i	 �A	r
br

; i ¼ lþ 1; . . . ; n; (7)

where A	r is the rth column of A, and br ¼ 1TZ0;1A	r is the
normalization factor, which balances skewed class distribu-
tions [50].

3.2 Limitation of AGR: A Dilemma

Compared with the traditional graph models, anchor graph
additionally introduces an anchor set into the graph con-
struction. As the number of these anchors can be much
smaller than datapoints, both the graph construction and
the optimization (especially the inverse computation in
Eq. (6)) become much faster. AGR thus becomes a popular
tool to handle relatively large datasets.

However, AGR still has limitation in dealing with
extremely large-scale datasets. Specifically, it faces a
dilemma between performance and computational cost. If
we only employ a relatively small number of anchors, the
performance of the AGR approaches will degrade as label
smoothness regularization and label inference cannot be
performed effectively. For the label smoothness regulariza-
tion, it will introduce many noisy intra-layer edges between
dissimilar datapoints by Eq. (3), as they tend to share a dis-
tant anchor. For the label inference, it will lead to unreliable
integration of label information from k nearest anchors, as
inter-layer adjacencies are estimated with too sparse
anchors that can be far away from the datapoint. Therefore,
to obtain a reasonable accuracy, anchors in the AGR
approaches need to be sufficiently dense to build effective
adjacency relationships. According to Eq. (6), it results in a
dramatically increase of computational cost, which makes
the approach practically intractable.

4 HIERARCHICAL ANCHOR GRAPH

REGULARIZATION

We first introduce the definition of hierarchical anchor
graph and how we use this graph to build a scalable GSSL
approach. Then, we present the efficient graph construction
based on ANNS, followed with the analysis on time com-
plexity and other discussions.

4.1 Label Inference and Regularization in HAGR

For graph-based SSL, to obtain good performances in large-
scale classification tasks, it always requires an effective
smoothness term for regularization, and an efficient solu-
tion for model optimization. To build such a scalable graph-
based classifier, we extend the anchor graph to a pyramid-
like structure and propose a novel graph model called hier-
archical anchor graph. For clarity, an illustrative example of
the hierarchical anchor graph is shown in Fig. 1b.

Definition 1 (Hierarchical Anchor Graph). G ¼ fX ;U; Eg
is a multiple-layer pyramidal graph, where X indicates the data
set, U indicates the collection of anchor sets, and E indicates the
collection of the adjacency matrices of inter-layer edges between
neighboring layers. Suppose the original datapoints X 2 Rd�n

locate in the bottom layer (L0) of the pyramid. The remaining
layers (Lb; b ¼ 1; . . . ; h) are all composed of multiple anchor
sets Uis from fine to coarse, where the size of
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Ub 2 Rd�mbðb ¼ 1; . . . ; hÞ is gradually reduced, namely,
m1 > 	 	 	 > mh. All the layers are linked up to a complete

graph with h sets of inter-layer adjacency edges, represented by

E ¼ fZ0;1; . . . ;Zh�1;hg 2 Rfn�m1;...;mh�1�mhg, in which Zb�1;b

denotes the adjacencies between points in Lb�1 and Lb.

Based on the hierarchical anchor graph, we can construct
a scalable graph-based classifier for multi-class classification
tasks, of which the following two key parts are presented in
detail: 1) inter-layer adjacency relationships for label infer-
ence, which is designed to reduce the number of parameters
and make the learningmore efficient; and 2) intra-layer adja-
cency relationships for label smoothness, which is to build
an effective regularization and ensure the learning accuracy.

We first pay attention to the former one. Based on the col-
lection of the inter-layer adjacency relationships, we propose
to infer the labels of datapoints from Lh layer by layer
throughout the whole graph. As a result, we only need to
learn the labels of the coarsest anchors in Lh. Denote ZH as
the adjacency matrix that estimates the accumulated inter-
layer relationships fromL0 toLh, andwe can computeZH as

ZH ¼ Z0;1 . . .Zh�1;h 2 Rn�mh: (8)

Let A denote the soft label matrix of the anchor set in Lh,
and F denote the inferred label matrix of datapoints in L0.
With the above accumulated matrix, we can conduct the
label inference from Lh to L0 in a coarse-to-fine manner

F ¼ Z0;1Zh�1;hA

¼ ZHA:
(9)

Next, we consider the label smoothness regularization. In
traditional graph-based learning, we prefer sparse intra-
layer adjacency matrix because a sparse graph has much
less spurious connections between dissimilar points and
tends to exhibit high quality. Zhu [49] also pointed out that
fully-connected dense graphs perform worse than sparse
graphs empirically. Denoting W as the intra-layer adjacency
matrix used in label smoothness regularization, we there-
fore formulate W only based on the inter-layer adjacencies
between the data layer L0 and the finest anchor layer L1 in
the hierarchical anchor graph

W ¼ Z0;1ðL1Þ�1
Z0;1T 2 Rn�n; (10)

where the diagonal matrix L1 is defined as L1
ss ¼

Pn
j¼1 Z

0;1
js .

Based on the inferred label matrix F and the intra-layer
adjacency matrix W, we finally obtain Hierarchical Anchor
Graph Regularization

argminA k ZH
LA� YL k2F þ �

2

Xn
i;j¼1

Wijk ZH
i	A� ZH

j	A k2; (11)

where ZH
L is the labeled part of ZH. Similar to Eq. (4), we

have Dii ¼
P

j Wij ¼ 1, and the above expression can be
written in the matrix form

argminAkZH
LA� YLk

2

F þ �trðATZHTðI�WÞZHAÞ;

or

argminAkZH
LA� YLk

2

F þ �trðATL̂AÞ; (12)

where L̂ is the reduced Laplacian matrix in HAGR, com-
puted by

L̂ ¼ ZHTðI�WÞZH

¼ ZHT
ZH � ðZHT

Z0;1ÞðL1Þ�1ðZ0;1TZHÞ 2 Rmh�mh:
(13)

As we can see, although our label smoothness regulariza-
tion is first performed on the labels of all datapoints with
the finest anchor layer, the optimization only involves a
reduced Laplacian matrix with the size of the coarsest
anchor layer. Therefore, HAGR can overcome the limitation
of AGR and improve the computation in matrix inversion.
Note that since ZH is the product of a series of k-sparse adja-
cency matrices, we will show that the computation of L̂ is
also efficient. The detailed computational costs of HAGR
will be analyzed later.

With simple derivations, we obtain a global optimal solu-
tion for the soft label matrix of the anchor set in Lh as

A ¼ ðZH
L

T
ZH
L þ �L̂Þ

�1
ZH
L

T
YL: (14)

Based on the learnt labels of the coarsest anchors and the
inter-layer adjacency matrix ZH, we can finally infer the
hard label for any unlabeled datapoint

byi ¼ argmaxr2f1;...;cg
ZH
i	 �A	r
br

pr; i ¼ lþ 1; . . . ; n; (15)

where br ¼ 1TZHA	r is the normalization factor, and pr is
the desirable proportion for class r [50].

From the definition of hierarchical anchor graph, we can
see its flexibility. We can vary the number of anchor layers
and the number of anchors in each layer. We leave the spe-
cific analysis on the parameter settings in the experimental
section. In particular, we find that, if our hierarchical anchor
graph only contains one anchor layer ðh ¼ 1Þ, it degrades to
the anchor graph, and correspondingly HAGR becomes
equivalent to AGR.

4.2 Efficient Graph Construction

Like anchor graph, the construction of a hierarchical anchor
graph involves two issues, i.e., the generation of anchor sets
and the inter-layer adjacency estimation between neighbor-
ing layers.

For the first issue, we can simply follow the anchor graph
models in [24], [38] to use a fast clustering algorithms to han-
dle it. As for the issue of the weight estimation, besides the
standard kernel regression method, formulating it as a geo-
metric reconstruction problem is an alternative choice [23],
[36]. However, the kernel regression takesOðdnm1Þ time com-
plexity,while the geometric basedmethods needmore time in
solving an optimization problem. For extremely large data-
sets, both of them can bring intractable computational costs.

To improve the efficiency of the graph construction, we
investigate an ANNS technique to accelerate the weight esti-
mation. To obtain adjacency relationships between points in
Lb�1 and Lb, we first build a Kmeans tree T upon points in
Lb. Then, for each point in Lb�1, we find its k nearest points
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in Lb with T , and compute a set of l1 normalized weights
between them. With this operation, for example, estimating
the adjacencies between n datapoints and m1 anchors can
be efficiently implemented in Oðdnlogm1Þ [29]. The whole
process is summarized in Algorithm 1. Note that aiming at
further efficiency, other state-of-the-art techniques, such as
Hashing [30], [39], [40], can be considered.

Algorithm 1. Kmeans-Tree-Based Inter-Layer Weight
Estimation

Input: points inLb�1, points inLb, number of nearest neighbors k.
1: Employ Kmeans tree building algorithm on points in Lb,

and obtain a Kmeans tree T .
For each point vi in Lb�1

2: Employ Kmeans tree searching algorithm for vi on tree
T , and obtain indices of its k approximate nearest
neighbors hii, with the corresponding distances dhii.

3: Compute the l1 normalized inter-layer weights

zhii ¼ expð� dhii
s
Þ=ẑ, where ẑ ¼

P
expð�dhii

s
Þ.

End for
4: Construct a sparse inter-layer adjacency matrix Zb�1;b

with the above indices hiis and weights zhiis.

Output: Zb�1;b.

Note: The details about Kmeans tree building and searching algo-
rithms can be found in [29].

4.3 Computational Cost of HAGR

We now analyze the computational cost of HAGR. As inter-
layer adjacency matrices in HAGR are all k-sparse, we first
introduce the following theorem for the fast sparse matrix
multiplication. According to it, for example, the time cost of
the accumulated inter-layer matrix ZH scales as OðknmhÞ .

Theorem 1. Let P and Q be two a� b matrices. If Q contains at
most c non-zero entries, the naive algorithm can obtain product
O ¼ PQT with ac multiplications. The similar bound is
obtained when P contains at most c non-zero entries. The num-
ber of additions required is also bounded by the required num-
ber of multiplications.

The proof of the above theorem can be found in [43].
Then, the steps of HAGR and the corresponding time

costs are summarized as follows.

1) Construct a hierarchical anchor graph with Algo-
rithm 1. The computational cost of computing the
adjacency matrices is Oð

Ph
b¼1 dmb�1logmbÞ, where

m0 ¼ n. Since practically we usually have n 
 mb,
this cost can be approximated as Oðdnlogm1Þ.

2) Calculate the reduced Laplacian matrix L̂ via
Eq. (13). As the main cost of this step is the sparse
matrix multiplication, based on Theorem 1, the total
cost here scales as OðknmhÞ.

3) Carry out the graph regularization via Eq. (14). The
complexity of the matrix inversion is Oðm3

hÞ.
4) Predict the hard labels of unlabeled datapoints via

Eq. (15). As we have obtained ZH in step 2, it can be
conducted efficiently in OðnmhcÞ.

To sum up, the time complexity of HAGR scales as

Oðdnlogm1 þ knmh þm3
h þ nmhcÞ;

where d is the number of feature dimensions,mb is the num-
ber of anchors in the bth layer, k is the number of nearest
neighbors in adjacency estimation, and c is the number
of classes.

Here we also summarize the computational costs of
Learning with Local and Global Consistency (LLGC [47], a
typical graph-based SSL method), AGR and HAGR in
Table 2, in which Algorithm 1 is applied into all these meth-
ods for a fair comparison. From the table we can observe
that, although their complexities in graph construction
become linear with respect to the data size and can be com-
parable, LLGC still has a cubic-time complexity in graph
regularization. AGR faces a dramatically increase of compu-
tational cost when anchors need to be sufficiently dense for
a reasonable accuracy. However, as the scale of the coarsest
anchors can be much smaller than the finest anchors, i.e.,
m1 
 mh, HAGR has a much less computational cost and is
able to deal with large-scale datasets.

4.4 Discussion on Adjacency Designs

In Section 4.1, we suggest to build the inter-layer adjacency
matrix ZH with anchors layer by layer, and the intra-layer
adjacency matrix W only based on points in L0 and L1.
Now we present an in-depth analysis on these two aspects.

4.4.1 On the Inter-Layer Adjacency

In HAGR, we model inter-layer adjacency relationships
from L0 to Lh layer by layer, and then infer the labels of
datapoints in a coarse-to-fine manner. According to Eq. (7),
it leads to the adaptive relationships between datapoints
and the coarsest anchors. That is, when the datapoint is
inside the convex envelope of its k nearest anchors in Lh,
this datapoint only has connection with these k anchors.
When the datapoint is close to the convex envelope’s mar-
gin, it can build extra inter-layer edges with other nearest
anchors in Lh. Otherwise, if we build adjacencies between
points in L0 and Lh in one step, we are only able to obtain
the inflexible relationships between datapoints and their
fixed k nearest anchors in Lh.

In the label inference, the above adaptive relationships
lead to more reliable integration of label information from
the coarsest anchors. Without loss of generality, we demon-
strate this by a toy example in Fig. 2, where we have k ¼ 3
and h ¼ 2. In this example, we want to infer the labels of
datapoints ðxi; i ¼ 1; 2Þ assisted with the labels of the nearby
anchors ðus; s ¼ 1; 2; 3; 4Þ in L2. In our coarse-to-fine man-
ner, the datapoint x1, which is inside the convex envelope of
its 3 nearest anchors in L2, receives labels from these 3
anchors. Meanwhile, the datapoint x2, which is near to a
margin of its convex envelope, can receive label information
from both u1;u2;u3 and u4, due to the transitional anchor u0

4

TABLE 2
Comparison of Computational Complexities

of Three Graph-Based Methods

Methods LLGC AGR HAGR

Graph construction OðdnlognÞ Oðdnlogm1Þ Oðdnlogm1Þ
Regularization Oðn3Þ Oðknm1 þm3

1Þ Oðknmh þm3
hÞ

Inference - Oðnm1cÞ OðnmhcÞ
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in L1. On the contrary, suppose we conduct the one-step
label inference between datapoints and their fixed k coarsest
anchors. When k ¼ 3, the label information on u4 is ignored
in predicting y2. When k ¼ 4, the noisy labels of the coarsest
anchors far away are introduced while inferring y1. In Sec-
tion 5.1, we will empirically demonstrate that the classifica-
tion accuracy can be obviously improved due to this
characteristic of ZH, although the labels of datapoints are still
inferred from sparse anchors, namely, the coarsest anchors.

4.4.2 On the Intra-Layer Adjacency

Note that we compute the intra-layer adjacency matrix as
W ¼ Z0;1L�1

1 Z0;1T. That means, we build W only based on
the anchors in L1 to force the intra-layer edges stay between
similar datapoints. We can also build W based on anchors
in coarser layers, such as using the hth layer, i.e.,
W ¼ Z0;hL�1

h Z0;hT 2 Rn�n, h > 1, But note that using differ-
ent anchor layers to buildW leads to nearly the same compu-
tational costs of HAGR. Meanwhile, too sparse anchors will
arise many incorrect intra-layer edges between dissimilar
datapoints since they possibly share a common anchor. That
is whywe computeW only using the anchors inL1.

5 EXPERIMENT

In this section, we investigate both the effectiveness and effi-
ciency of our proposed HAGR on real-world datasets. All
the experiments are implemented on a PC with E5-2620 v2
@2.10 GHz and 64G RAM. Here we use the following five
datasets with scales varying from 20,000 to 8,100,000. The
descriptions of these datasets are given in below, and some
statistics of them are listed in Table 3.

1) Letter. The dataset contains 20,000 samples of capital
letters from ‘A’ to ‘Z’ in the English alphabet [11].
Each sample is converted into 16 primitive numeri-
cal attributes (statistical moments and edge counts).

2) MNIST. It contains 70,000 samples of handwritten
digits from ‘0’ to ‘9’ [21]. Each of the ten classes

contains about 7,000 samples, which are images cen-
tered in a 28� 28 field by computing the center of
mass of the pixels. We directly use the normalized
grayscale value as the feature.

3) Extended MNIST. The extended MNIST is widely
used in many large-scale graph-based works [15],
[19], [24]. The dataset is constructed by translating
the original images in MNIST one pixel in each direc-
tion. As a result, there are 630,000 samples in 900
dimensions by using the normalized grayscale val-
ues as features.

4) Extended USPS. The original USPS dataset contains
7,291 training samples of handwritten digits in ten
classes [23]. All the digits from ‘0’ to ‘9’ are extended
by shifting the 16� 16 images in all directions for up
to five pixels [33]. There are 882,211 samples in 676
dimensions in total.

5) MNIST8M. The MNIST8M dataset has been used in
[16], [22], [26] to verify the effectiveness of large-scale
learning algorithms. It contains totally 8,100,000 sam-
ples in 784 dimensions. In this dataset, the first
70,000 samples belong to the standard MNIST data-
set, and each remaining example is generated by
applying a pseudo-random transformation to the
MNIST training example.

Similar to [23] and [36], the above datasets are catego-
rized into small, medium and large sizes. Specifically, in
our experiments, we regard Letter and MNIST as small-size
datasets, Extended MNIST and Extended USPS as medium-
size datasets, and MNIST8M as a large-size dataset.

5.1 On the Effectiveness of Intra-Layer and
Inter-Layer Adjacency Matrices

We conduct experiments on small-size datasets, i.e., Letter
and MNIST, to validate the effectiveness of two adjacency
designs discussed in Section 4.4.

We first construct a hierarchical anchor graph with two
anchor layers, where the size of L1 is empirically set to

Fig. 2. An illustration of anchor-based label inference in a hierarchical anchor graph. Note that we ignore other points as they have no influence on
the label inference here.

TABLE 3
Details of the Five Databases Used in Our Experiments

Letter MNIST Extended MNIST Extended USPS MNIST8M

# of instances 20,000 70,000 630,000 882,211 8,100,000
# of categories 26 10 10 10 10
# of dimensions 16 784 900 676 784
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n=10, and the size of L2 varies from 100 to 500. For a clear
comparison, we change the formulation of AGR to

argminAkZLA� YLk2F þ �

2

Xn
i;j¼1

Wijk Zi	A� Zj	A k2; (16)

where W is the intra-layer adjacency matrix for label
smoothness regularization and Z is the inter-layer adjacency
for label inference.

Then, based on the above formulation and the hierarchi-
cal anchor graph, we define three intermediate versions for
HAGR:

1) HAGRbase, which has the same structure to AGR and
is a baseline for comparison. It only employs anchors
in L2 and datapoints in L0 to build adjacency matri-
ces for both the label smoothness regularization and
label inference.

2) HAGRW , which is an improved version of HAGRbase

with a change on label smoothness regularization.
This method is compared in order to validate the
intra-layer adjacency design. Compared with
HAGRbase, the only difference is that, for the label
smoothness regularization, it builds W as
Z0;1ðL1Þ�1

Z0;1T in Eq. (16)
3) HAGRZ , which is an improved version of HAGRbase

with a change on label inference. This method is
compared in order to validate the inter-layer adja-
cency design with a coarse-to fine manner. Com-
pared with HAGRbase, it builds an accumulated
inter-layer matrix Z as Z0;1Z1;2 in Eq. (16).

The differences of HAGR and the above methods are
summarized in Table 4. For the other parameters, we set k

to 3 to make the graph sparse, and tune � to its optimal val-
ues. In this way, we can provide a fair comparison for these
algorithms to validate different adjacency designs. We ran-
domly select 260 and 100 labeled samples for Letter and
MNIST, respectively, and leave the remaining ones unla-
beled for SSL models.

Table 5 shows the classification accuracies of the above
methods. From this table, we have three observations. First,
by comparing HAGRW with HAGRbase, we can see that,
although two methods build the same inter-layer relation-
ships between points in L0 and L2, HAGRW obtains higher
accuracies than HAGRbase. The main reason is that, by intro-
ducing a much sparser intra-layer adjacency matrix,
HAGRW can better smooth the labels of datapoints. Second,
by comparing HAGRZ with HAGRbase, we can see that, the
former obtains better classification performances than the
latter, which shows the effectiveness of our adaptive inter-
layer adjacency relationships in label inference. Third, when
the size of L2 increases, the accuracies of all these
approaches increase, and HAGR consistently outperforms
the other three methods.

5.2 Comparison with Existing Methods

To demonstrate both the efficiency and effectiveness of
the proposed HAGR, we compare it with several state-
of-the-art anchor-based SSL models, such as AGR and
EAGR. We also report the performance of several base-
line methods including 1NN, linear SVM. For clarity, here
we use ‘HAGR-m1m1-m2m2-	 	 	-mhmh’ to denote the HAGR method
built upon a hierarchical anchor graph with hh anchor layers.
For example, ‘HAGR-5000-500’ means there are two
anchor layers in its graph structure, which contain 5,000
and 500 anchors, respectively. The methods for compari-
son are described in below.

1) The nearest neighbor method, which determines the
label of a sample by referring to its closest sample in
the labeled set. The method is denoted as ‘1NN’.

2) Linear SVM [8]. We use the SVM implementation
from LIBLINEAR, which is a library for large-scale
linear classification. The method is denoted as
‘LSVM’.

3) Anchor graph Regularization [23], which is built
upon an anchor graph with single anchor layer. It is
the prime counterpart in our experiments, and we
denote it as ‘AGR’.

TABLE 4
The Differences of HAGRbase, HAGRW , HAGRZ ,

and HAGR in Terms of Label Inference and
Label Smoothness Regularization

Approaches Adjacency Matrix

Label Inference
Term

Label Smoothness
Regularization Term

HAGRbase Z0;2 Z0;2ðL2Þ�1
Z0;2T

HAGRW Z0;2 Z0;1ðL1Þ�1
Z0;1T

HAGRZ Z0;1Z1;2 Z0;2ðL2Þ�1
Z0;2T

HAGR Z0;1Z1;2 Z0;1ðL1Þ�1
Z0;1T

TABLE 5
Accuracy (%) Comparison of HAGRbase, HAGRW , HAGRZ , and HAGR on the Letter and MINST Datasets

Dataset m1 m2 HAGRbase HAGRW HAGRZ HAGR

Letter 2,000 100 45:19� 1:53 45:61� 1:59 49:19� 0:70 49:57� 1:0249:57� 1:02
(l ¼ 260) 200 50:91� 1:40 51:30� 1:31 54:75� 1:21 54:93� 1:0554:93� 1:05

300 53:72� 1:54 54:76� 1:73 57:00� 1:43 57:78� 1:4857:78� 1:48
400 55:58� 1:66 56:99� 1:57 58:30� 1:34 59:88� 1:4259:88� 1:42
500 56:80� 1:65 58:00� 1:69 59:51� 1:18 60:86� 1:3660:86� 1:36

MNIST 7,000 100 79:17� 1:39 80:33� 1:30 82:33� 1:15 84:59� 0:8984:59� 0:89
(l ¼ 100) 200 83:28� 1:21 83:92� 1:17 85:01� 0:87 86:79� 0:6686:79� 0:66

300 84:44� 0:98 85:03� 1:02 85:89� 0:97 88:01� 1:0088:01� 1:00
400 85:30� 1:31 85:92� 1:26 86:21� 1:15 88:32� 1:1588:32� 1:15
500 86:35� 1:80 86:82� 1:74 86:84� 1:18 88:66� 1:2388:66� 1:23
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4) Efficient Anchor graph Regularization [36], which is
an improved version of AGR. The method is denoted
as ‘EAGR’.

5) HAGR-m1-m2, which denotes a two-anchor-layer
HAGR method. We build the corresponding hierar-
chical anchor graph by adding a coarser anchor layer
above the anchor graph in methods (3-4). The pur-
pose of comparing our approach with this method is
to demonstrate the efficiency by introducing a
smaller anchor layer.

6) HAGR-m1-m2-m3, which denotes a three-anchor-
layer HAGR method. Based on the graph structure
in method (5), we add a finer anchor layer with sam-
pled points between its data layer and two anchor
layers. This three-anchor-layer HAGR is our pro-
posed approach for the classification on the
medium-size and large-size datasets.

Note that here we do not further compare our approach
with several other SSL or large-scale classification methods
such as conventional graph-based SSL [47], the Eigenfunc-
tions method introduced in [9], the Laplacian SVM method
introduced in [28] and the Prototype Vector Machines
method introduced in [45], [46], due to the following two
facts. First, several methods can hardly be implemented on
very large datasets. Second, existing studies have already
demonstrated the performance superiority of AGR and
EAGR over thesemethods [23], [36], and thus the superiority
of HAGRwill be greater if it outperformsAGR and EAGR.

For fair comparisons, we consistently apply the proposed
ANNS-based weight estimation algorithm for methods (3-6)
in their graph construction, and corresponding kernel

widths are set by cross validation. For the above methods,
we tune � to the optimal values.

5.2.1 Medium-Size Datasets

We first conduct experiments on the Extended MNIST and
ExtendedUSPS datasets. To accelerate the running speed, we
follow [23] and performPCA to reduce the feature dimension
to 86. For the twomedium-size datasets, we consistently con-
struct the anchor graph with 20,000 anchors to build AGR
and EAGR. Then, by further adding anchor layers, we build
two HAGR methods as ‘HAGR-20,000-5,000’ and ‘HAGR-
200,000-20,000-5,000’, respectively. As for the setting of semi-
supervised learning, we vary the number of labeled samples
l ¼ f100; 200; . . . ; 1; 000g, while the rest samples remain as
unlabeled data.

Averaged over 20 trials, the classification accuracies of
the Extend MNIST and Extend USPS datasets are shown in
Tables 6 and 7, respectively. The time costs of SSL methods
are listed in Table 8.

From these tables, the following observations can be
made. First, the performances of all graph-based SSL
approaches stay at a higher level than Linear SVM and
1NN. This demonstrates the usefulness of unlabeled data in
SSL. Second, compared with AGR and EAGR, the accuracies
of HAGR-20,000-5,000 are slightly lower. However, the per-
formance gap is quite limited-compared with AGR, the
accuracy loss of this two-anchor-layer HAGR is smaller
than 0.5 percent in most cases. It means that, by building an
intra-layer adjacency matrix based on a fixed-size anchor
set for label smoothness regularization, the effectiveness of
the anchor-based learning can be almost maintained even

TABLE 6
Classification Accuracies (%) with Different Number of Labeled Samples on the Extended MNIST Dataset

# of labeled
samples

1NN LSVM AGR EAGR HAGR-
20,000-5,000

HAGR-
200,000-20,000-5,000

100 60:95� 0:59 58:58� 2:11 88:42� 1:36 88:48� 1:29 87:97� 1:28 90:75� 1:0390:75� 1:03
200 69:33� 0:99 64:07� 1:58 90:23� 0:44 90:80� 0:42 89:81� 0:56 92:21� 0:4292:21� 0:42
300 73:51� 0:89 66:99� 0:53 91:10� 0:38 91:84� 0:35 90:65� 0:43 93:13� 0:3193:13� 0:31
400 75:80� 0:60 69:50� 0:86 91:35� 0:34 92:15� 0:29 91:15� 0:33 93:39� 0:1893:39� 0:18
500 77:77� 0:41 71:47� 1:21 92:12� 0:18 92:66� 0:17 91:96� 0:12 93:73� 0:1993:73� 0:19
600 79:09� 0:53 72:69� 1:30 92:47� 0:10 92:99� 0:13 92:27� 0:11 93:95� 0:1193:95� 0:11
700 80:17� 0:29 73:69� 1:96 92:54� 0:11 93:11� 0:13 92:43� 0:12 94:05� 0:1194:05� 0:11
800 81:10� 0:41 75:22� 1:40 92:79� 0:13 93:39� 0:09 92:61� 0:10 94:15� 0:0694:15� 0:06
900 81:94� 0:45 75:93� 1:11 93:09� 0:09 93:63� 0:10 92:93� 0:09 94:23� 0:0694:23� 0:06
1,000 82:60� 0:38 76:69� 0:95 93:23� 0:11 93:77� 0:08 93:09� 0:10 94:28� 0:0994:28� 0:09

TABLE 7
Classification Accuracies (%) with Different Number of Labeled Samples on the Extended USPS Dataset

# of labeled
samples

1NN AGR EAGR HAGR-
20000-5000

HAGR-
200000-20000-5000

100 38:37� 0:71 63:82� 1:33 64:09� 0:85 63:43� 1:11 68:06� 1:5568:06� 1:55
200 47:96� 1:14 73:60� 0:90 73:75� 0:96 73:48� 0:96 77:90� 1:3377:90� 1:33
300 53:48� 1:06 78:47� 0:91 78:88� 0:78 78:28� 0:67 82:28� 0:9282:28� 0:92
400 57:61� 1:00 81:41� 0:60 81:75� 0:45 81:00� 0:57 84:50� 0:8184:50� 0:81
500 61:19� 0:80 83:51� 0:94 84:09� 0:75 84:05� 0:78 86:35� 0:9486:35� 0:94
600 63:94� 0:64 84:50� 0:88 85:28� 0:76 84:09� 0:65 87:11� 0:8487:11� 0:84
700 65:90� 0:44 85:80� 0:70 86:52� 0:56 85:31� 0:42 88:10� 0:4988:10� 0:49
800 67:79� 0:38 86:31� 0:93 87:59� 0:74 86:29� 0:69 88:91� 0:6588:91� 0:65
900 69:18� 0:38 86:95� 0:68 88:23� 0:59 86:95� 0:50 89:44� 0:3289:44� 0:32
1,000 70:71� 0:60 87:87� 0:55 88:82� 0:35 87:55� 0:47 90:01� 0:3190:01� 0:31
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we significantly reduce the size of to-be-learned anchor set
(from 20,000 to 5,000). When taking into account the run-
ning time of the learning process (shown in Table 8), this
accuracy loss becomes acceptable in real applications. Third,
by increasing the size of L1 over 20,000, the performances of
the anchor-based approaches can be further improved due
to better adjacency relationships. Based on this, HAGR-
200,000-20,000-5,000 consistently outperforms AGR and
EAGR. When the number of labeled samples is small, this
advantage is more obvious, e.g., improvements of about 2
and 4 percent on Extended MNIST and Extended USPS,
respectively. It verifies the effectiveness of HAGR by intro-
ducing a finer anchor layer to improve the graph regulariza-
tion. Fourth, although the ANNS-based graph construction
can be applied to all graph-based approaches, it is particu-
larly suitable for our HAGR. Due to this efficient graph con-
struction and the fast optimization, HAGRs overcome the
limitation of AGR and EAGR, and achieve good performan-
ces with less computational costs.

5.2.2 Large-Size Dataset

To demonstrate the scalability of HAGR, we conduct experi-
ments on the MNIST8M dataset, where the dimension of
examples is also reduce to 86 by PCA. We first construct an
anchor graph with 30,000 anchors to build AGR and EAGR.
Then, we build two HAGR methods, i.e., ‘HAGR-30000-
5,000’ and ‘HAGR-300,000-30,000-5,000’, respectively. By
repeating the similar evaluation process, we display the
classification accuracies over 20 trials in Table 9. The time
costs of SSL approaches are listed in Table 10.

From these tables, we have the following observations.
First, compared with AGR and EAGR, the accuracy loss of

HAGR-30,000-5,000 is acceptable while its time cost is much
less. Second, as the number of labeled data varies from 100
to 1,000, the performances of all methods increase, and our
HAGR-300,000-30,000-5,000 consistently outperforms the
other methods.

It is also worth noting that, in our experimental results,
we actually have put more emphasis on the performance
superiority of the three-anchor-layer HAGR. One may
argue that we can increase the number of anchors in AGR
and EAGR, say, setting 300,000 anchors. But this will dra-
matically increase the time costs of these methods
(increased by about 103 times), which are practically
intractable.

5.3 On the Structure of Hierarchical Anchor Graph

We can see that HAGR is a quite flexible approach, and thus
designing the structure of the hierarchical anchor graph can
be important in classification tasks. Therefore, we conduct
additional experiments by varying the number of anchor
layers (h) and the size of each anchor layer (mb) in the pro-
posed graph model, trying to investigate the impact of these
parameters. For convenience, Extended USPS dataset is
used in this experiment. We build three anchor graphs with
5,000, 10,000, and 20,000 anchors for implementing AGR
and EAGR as comparisons.

For clarity, in the pictures illustrating results, we use
black/blue/red lines to show the results of HAGR built
with 2/3/4 anchor layers, respectively. Among them, each
dot-curve denotes HAGRs with the varying anchor size mb,
and the straight line without dots means the size of each
anchor layer of this HAGR is fixed. The specific size is dis-
played at the bottom of each subfigure.

TABLE 8
The Comparison of Time Costs (in Seconds) of AGR, EAGR, and HAGR Methods on Medium-Size Datasets

Dataset AGR EAGR HAGR-20,000-5,000 HAGR-200,000-20,000-5,000

Extended MNIST 152.81 151.58 12.12 17.06
Extended USPS 163.31 162.75 17.55 24.18

TABLE 9
Classification Accuracies (%) with Different Number of Labeled Samples on the MNIST8M Dataset

# of labeled
samples

1NN LSVM AGR EAGR HAGR-
30,000-5,000

HAGR-
300,000-30,000-5,000

100 60:16� 1:96 59:67� 2:19 89:87� 1:78 90:27� 0:18 89:46� 1:24 91:36� 0:7091:36� 0:70
200 68:66� 1:29 64:46� 2:37 91:15� 0:59 91:76� 0:57 90:85� 0:50 92:46� 0:4292:46� 0:42
300 72:78� 0:81 66:79� 2:25 92:21� 0:51 92:37� 0:51 91:66� 0:42 93:05� 0:3793:05� 0:37
400 75:33� 0:60 68:33� 1:97 92:47� 0:44 92:73� 0:38 92:16� 0:36 93:43� 0:3793:43� 0:37
500 77:24� 0:55 70:65� 1:49 92:70� 0:41 93:05� 0:29 92:50� 0:29 93:78� 0:2493:78� 0:24
600 78:58� 0:54 72:64� 1:36 92:80� 0:34 93:17� 0:27 92:64� 0:26 93:90� 0:2793:90� 0:27
700 79:87� 0:70 73:80� 1:27 93:12� 0:31 93:41� 0:30 92:92� 0:28 94:10� 0:2594:10� 0:25
800 81:02� 0:50 73:87� 1:18 93:19� 0:23 93:51� 0:15 93:06� 0:16 94:21� 0:1594:21� 0:15
900 81:76� 0:49 73:97� 0:96 93:29� 0:36 93:63� 0:21 93:18� 0:26 94:28� 0:1694:28� 0:16
1,000 82:51� 0:42 76:95� 1:13 93:49� 0:22 93:79� 0:15 93:37� 0:16 94:39� 0:1294:39� 0:12

TABLE 10
The Comparison of Time Costs (in Seconds) of AGR, EAGR, and HAGR Methods on the MNIST8M Dataset

Dataset AGR EAGR HAGR-30,000-5,000 HAGR-300,000-30,000-5,000

MNIST8M 665.07 662.60 104.97 137.54
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We first test the two-anchor-layer HAGRmethod. Similar
to the process in Section 5.2, for each of the three anchor
graphs, we add a coarser anchor layer L2 above the original
L1 to construct our hierarchical anchor graph (h ¼ 2). The
performance curves of HAGR-m1-m2 with respect to the
size of L2 are shown in Fig. 3. As we can see, the accuracy of
HAGR increases rapidly at the first stage. It means that,
although we can build a large-scale finest anchor layer in
HAGR to improve the performance, the size of to-be-
learned anchors cannot be too small. Otherwise, it tends to
restrict the performance of HAGR. When m2 reaches about
m1=4, the accuracy of the HAGR becomes stable. We note
that this number of to-be-learned anchors mh can still be

much smaller than the number of anchors m1 used in label
smoothness regularization.

Then, we investigate the three-anchor-layer HAGR
method. Based on each two-anchor-layer graph above, we
add a finer anchor layer L1 with m1 anchors between the
original data layer and two anchor layers to construct new
graph (h ¼ 3). The number of the coarsest anchors is set to
the empirical value, and the specific settings can be found
in Fig. 4. The performance curve of HAGR-m1-m2-m3 with
respect to m1 is shown in Fig. 4. As we can see, larger m1

brings higher accuracy. The reason is that, by increasing the
size of the finest anchor layer, the representation power of
these anchors becomes stronger. Then, we can obtain more

Fig. 3. Average performance curves with respect to the variation ofm2 in HAGR-m1-m2.

Fig. 4. Average performance curves with respect to the variation ofm1 in HAGR-m1-m2-m3.

Fig. 5. Average performance curves with respect to the variation ofm2 in HAGR-m1-m2-m3-m4.
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effective adjacency relationships for both the label smooth-
ness regularization and label inference.

We also build the four-anchor-layer HAGR method
(h ¼ 4) by further adding an anchor layer between original
L1 and L2 in each three-anchor-layer graph above. The per-
formance curve of HAGR-m1-m2-m3-m4 with respect to cur-
rent m2 is shown in Fig. 5. As we can see, further increasing
the number of anchor layers can improve the accuracy,
which demonstrates the effectiveness of exploring multiple-
layer anchors to model the coarse-to-fine label inference.

To summarize, when fixing the number of anchor layers
in hierarchical anchor graph, the performance of HAGR is
fairly robust to the number of anchors in each layer over a
large range (as we can see in each subfigure), and the to-be-
learned anchors can be much fewer than the anchors used
in label smoothness regularization. Meanwhile, increasing
the number of anchor layers can improve accuracy (under a
comparison from Figs. 3 to 5), and in our experiments, we
empirically find that three or four anchor layers are already
able to well handle million-scale datasets.

5.4 On the Trade-Off Parameter �

We also test the sensitivity of parameter � in the proposed
approach. For simplicity, we only illustrate the results of
HAGR with mh ¼ 5; 000 on the Extended USPS dataset. But
similar observations can also be obtained in other cases. As
we can see in Fig. 6, the performance of HAGR will not
severely degrade when � varies in a wide range, and
increasing the number of anchor layers does not change the
robustness of �.

6 CONCLUSION

This work proposes a novel Hierarchical Anchor Graph
Regularization approach by exploring multiple-layer
anchors in a pyramid-style structure. It generalizes the con-
ventional graph-based and anchor-graph-based SSL meth-
ods to a hierarchical approach. In HAGR, we perform label
smoothness regularization on all datapoints based on the

finest anchors. By inferring the labels of datapoints started
from the coarsest anchors, we obtain an efficient optimiza-
tion which only involves a small-size reduced Laplacian
matrix. It overcomes the limitations of existing AGR
approach in dealing with extremely large datasets. We also
investigate ANNS to improve the efficiency of the construc-
tion of the hierarchical anchor graph. Experiments on pub-
licly available large-scale datasets of various sizes have
demonstrated the effectiveness of our approach in terms of
computational speed and classification accuracy.
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