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Abstract—Many graph-based semi-supervised learning methods for large datasets have been proposed to cope with the rapidly

increasing size of data, such as Anchor Graph Regularization (AGR). This model builds a regularization framework by exploring the

underlying structure of the whole dataset with both datapoints and anchors. Nevertheless, AGR still has limitations in its two

components: (1) in anchor graph construction, the estimation of the local weights between each datapoint and its neighboring anchors

could be biased and relatively slow; and (2) in anchor graph regularization, the adjacency matrix that estimates the relationship

between datapoints, is not sufficiently effective. In this paper, we develop an Efficient Anchor Graph Regularization (EAGR) by tackling

these issues. First, we propose a fast local anchor embedding method, which reformulates the optimization of local weights and obtains

an analytical solution. We show that this method better reconstructs datapoints with anchors and speeds up the optimizing process.

Second, we propose a new adjacency matrix among anchors by considering the commonly linked datapoints, which leads to a more

effective normalized graph Laplacian over anchors. We show that, with the novel local weight estimation and normalized graph

Laplacian, EAGR is able to achieve better classification accuracy with much less computational costs. Experimental results on several

publicly available datasets demonstrate the effectiveness of our approach.

Index Terms—Semi-supervised learning, anchor graph, local weight estimation

Ç

1 INTRODUCTION

IN many real-world classification tasks, we are usually
faced with datasets in which only a small portion of sam-

ples are labeled while the rest are unlabeled. A learning
mechanism called semi-supervised learning (SSL), which is
capable of fully leveraging unlabeled data and labeled data
to achieve better classification, is therefore proposed to deal
with this situation. In recent years, various semi-supervised
learning methods [55] have been developed to adapt differ-
ent kinds of data, including mixture models [6], co-training
[4], semi-supervised support vector machines [18], and
graph-based SSL [54]. This learning mechanism is broadly
used in many real-world applications such as data mining
[30], [34], [35], [36], [52], [53] and multimedia content analy-
sis [14], [15], [24], [25], [49].

In this paper, we focus on the family of graph-based
semi-supervised learning methods. These methods are built
based on a cluster assumption [51]: nearby points are likely
to have the same label. A typical model of these algorithms

consists of two main parts: a fitting constraint and a smooth-
ness constraint, both of which have clear geometric mean-
ings. The former means that a good classification function
should not change too much from the initial label assign-
ment, while the latter means that this function should have
similar semantic labels among nearby points. Based on the
above formulation, these algorithms generally produce sat-
isfying classification results in a manifold space [12], [13],
[20], [40], [45], [50]. Meanwhile, graph-based SSL can be
intuitively explained in a label propagation perspective [54],
i.e., the label information from labeled vertices is gradually
propagated through graph edges to all unlabeled vertices.

Most traditional graph-based learning methods, how-
ever, focus on classification accuracy while ignoring the
underlying computational complexity, which is of great
importance for the classification of a large dataset, espe-
cially given the recent explosive increase in Internet data.
The complexity mainly arises from two aspects. The first
is the kNN strategy for graph construction, and the second
is the inverse calculation of the normalized Laplacian
matrix in optimization. Both of them are time-consuming
and have a large storage requirement.

To reduce the cubic-time complexity, recent studies seek
to speed up the intensive computation of the graph Lapla-
cian manipulation. Anchor graph regularization (AGR) [21],
[22], a recently proposed graph-based learning model for
large datasets, constructs a novel graph with datapoints
and anchors. It reduces the computational cost via subtle
matrix factorization by utilizing the intrinsic structure of
data distribution. It is exactly in linear time with data size.
The anchor graph model has been widely applied to many
applications [8], [19], [41], [42], [43] and achieves satisfac-
tory performance.
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There are two key parts in AGR. The first part is anchor
graph construction, in which a local weight matrix that
measures the relationship between datapoints and anchors
needs to be estimated. The second part is anchor graph reg-
ularization, in which an adjacency matrix that measures the
strength of graph edges needs to be designed. For local
weight estimation, a method called Local Anchor Embed-
ding (LAE) is employed in [21] to replace the conventional
kernel-defined weight computation. However, we will dem-
onstrate the limitation of the optimization objective of LAE.
Moreover, the LAE process is expensive as it involves a gra-
dient descent solver. For adjacency matrix design, Liu et al.
[21] introduce a method that constructs the adjacency
matrix based on local weight matrix. But actually it has
been shown in [21] that the regularization framework can
be equivalent to a regularization on anchors with a
”reduced” graph Laplacian. Therefore, in this work, we pro-
pose a novel approach named Efficient Anchor Graph Reg-
ularization (EAGR) with a novel local weight estimation
method and a more effective normalized graph Laplacian
over anchors. In comparison with AGR, EAGR obtains com-
parable or better accuracy in a shorter time in SSL based
classification tasks.

The main contributions of our work are as follows.

(1) We introduce a novel graph-based SSL approach
that is able to deal with large datasets. By improving
the conventional AGR method, we show that the
proposed EAGR is able to achieve better classifica-
tion accuracy with even much less implementation
time. The EAGR also empirically shows its advan-
tages over many existing SSL methods developed for
large datasets, such as the methods in [26], [47], [48].

(2) We point out the limitation of the conventional local
anchor embedding method and propose a novel
approach for local weight estimation. We reformulate
the objective function of LAE by replacing the inequal-
ity constraint with an absolute operation and obtain
an efficient and effective analytical solution. In addi-
tion, we incorporate the locality constraints into the
objective function to further improve the performance.

(3) Instead of designing an adjacency matrix for all data-
points, we directly compute an adjacency matrix for
anchors by exploring their commonly connected
datapoints. We show that the derived normalized
graph Laplacian over anchors is more effective than
the ”reduced” graph Laplacian in [21]. Graph-based
learning is performed with the corresponding regu-
larization on anchors.

The rest of this paper is organized as follows. In Section 2,
we survey related work. In Section 3, we briefly review the
AGR algorithm and conduct an in-depth analysis of its limi-
tations. The proposed approach EAGR is described in Sec-
tion 4. In Section 5, we conduct experiments on several
publicly available datasets to validate our model. Finally,
we conclude in Section 6.

2 RELATED WORK

In this section, we focus on the related work of graph-
based semi-supervised learning. Once we have constructed
a graph for all datapoints, the labels for classification can

be propagated from limited labeled data to remaining
unlabeled data [17].

For many years, researchers have focused on improving
the classification accuracy of graph-based SSL via designing
more appropriate label propagation models with simple
kNN graph. Zhu et al. [54] advocated the formulation of the
learning problem based on Gaussian random field and gave
intuitive interpretations for their model. Belkin et al. [2] pro-
posed a classification function which is defined only on the
sub-manifold rather than the whole ambient space. Zhou
et al. [51] subsequently suggested the design of a classifica-
tion model which is sufficiently smooth with respect to the
intrinsic structure collectively revealed by the known labeled
and unlabeled points. There are additionally many works
that focus on graph construction to improve classification
accuracy. For instance, Zelnik et al. [46] first stated that it
would be helpful to consider a local scale in computing the
affinity between each pair of points for the edge. Wang et al.
[37] developed a graph-based SSL approach based on a linear
neighborhood model which assumes that each datapoint can
be linearly reconstructed from its neighborhood. Similarly,
Tian et al. [33] proposed learning a nonnegative low-rank
graph to capture global linear neighborhoods. Although
these methods show promising performance in various
applications, they are not sufficiently scalable in terms of
computing and storage costs, which imposes limitations in
handling large datasets.

With the rapid increase in data size, researchers have paid
more attention to designing novel approaches to reduce the
computational cost of graph-based learning. Wang et al. [38]
proposed a multiple random divide-and-conquer approach
to construct an approximate neighborhood graph and
presented a neighborhood propagation scheme to further
enhance the accuracy. Huang et al. [16] proposed a novel
label propagation algorithm in which the label information
is first propagated from labeled instances to unlabeled
instances, and then labels spread among the unlabeled
instances until a steady state is reached. These algorithms
simplify either the graph construction or the label propaga-
tion, and so the computational cost is reduced to some extent.
Additionally, hashing strategies [7], [32], [29] can also be
applied to facilitate large-scale classification.

Recently, Liu et al. [21] proposed an anchor graph regular-
ization approach. The graph is constructed with datapoints
and anchors, which simultaneously reduces computational
cost and storage cost. As a result, the anchor graph model
has been applied to clustering [5], [44], hashing [23], mani-
fold ranking [43], multi-graph learning [9], and tracking [41].
For example, Yang et al. [44] proposed a low-rank learning
method to improve the clustering performance for large-
scale manifold data by a two-step bipartite random walk
through cluster nodes. Cai et al. [5] proposed an efficient
computation of the spectral embedding of data with an
anchor-based representation to improve spectral clustering.
Liu et al. [23] proposed an anchor graph based hashing
method to learn appropriate compact codes with a feasible
computational cost. Xu et al. [43] designed a new adjacency
matrix with the anchor graph to speed up manifold ranking
for image retrieval. Wu et al. [41] presented a local landmark
approximation (LLA) model, which iteratively solves its tar-
get function based on gradient projection. The model is
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applied to visual tracking and achieves state-of-the-art per-
formance. In spite of these, AGR still has some limitations,
which are analyzed and addressed in the following sections.

3 ANCHOR GRAPH REGULARIZATION

In this section, we first review the anchor graph regulariza-
tionmodel and then give a detailed analysis of its limitations.

3.1 Anchor Graph Regularization Formulation

Given a dataset D ¼ fðx1; y1Þ; ðx2; y2Þ; . . . ; ðxl; ylÞ; xlþ1; . . . ;
xng with n samples in d dimensions, we can obtain a set

of representative anchors U ¼ fu1;u2; . . . ;umg 2 Rd�m.
Typically, these anchors are selected by a clustering
method such as K-means. These anchors clearly share
the same feature space with the original datapoints. Let
f : x ! R be a real value function which assigns each
point a label from c distinct classes. Then, once we
obtain a local weight matrix Z that measures the poten-
tial relationships between datapoints and anchors, we
can estimate fðxÞ for each datapoint as a weighted aver-
age of the labels of the anchor set

fðxiÞ ¼
Xm
k¼1

ZikfðukÞ; (1)

with the constraints
Pm

k¼1 Zik ¼ 1 and Zik � 0. Note that the
element Zik represents the local weight between datapoint
xi and anchor uk.

Kernel-defined weights are usually sensitive to hyper-
paramters and lack a meaningful interpretation. To mea-
sure the local weights more robustly, one can adopt a
LLE[31] like objective function with a clear geometric
meaning:

argminzikxi �Uhiizhiik2 (2)

s:t:1Tzhii ¼ 1; zhii � 0;

where hii is a index set of s closest anchors of xi. A standard
quadratic problem (QP) solver can be used to solve Eq. (2).
To achieve a faster optimization, Liu et al. suggested a new
algorithm named local anchor embedding, which employs
Nesterovs method [28] to accelerate the gradient descent.
More details can be found in [21].

Based on the local weights Z ¼ fz1; . . . ; zngT 2 Rn�m, the
adjacency matrix between datapoints can be designed as

W ¼ ZL�1ZT; (3)

where the diagonal matrix L is defined as Lkk ¼
Pn

i¼1 Zik;
k ¼ 1; . . . ;m. From Eq. (3), we can see that if two points are
correlative ðWij > 0Þ, they share at least one common
anchor, and otherwise Wij ¼ 0. It is likely that datapoints
sharing common anchors have similar semantic concepts.

Let Yl ¼ ½y1T; y2T; . . . ; ylT�T 2 Rl�c denote a class indica-
tor matrix on labeled samples, with Yij ¼ 1 if xi belongs to

class j and Yij ¼ 0 otherwise. Let A ¼ ½a1T; a2T; . . . ; amT�T 2
Rm�c denote the prediction label matrix on the anchor set.
Anchor graph regularization can be naturally formulated to
deal with the standard multi-class SSL problem as follows:

QðAÞ ¼
Xl
i¼1

kzTi A� yik
2 þ g

2

Xn
i;j¼1

WijkzTi A� zTj Ak2

¼ kZlA� Ylk2F þ gtrðATZTðI�WÞZAÞ
¼ kZlA� Ylk2F þ gtrðAT~LAÞ;

(4)

where ~L ¼ ZTðI�WÞZ 2 Rm�m is the reduced Laplacian,

Zl 2 Rl�m is the sub-matrix according to the labeled part of
local weight matrix Z, and g > 0 is a trade-off parameter.

From the above equation, we can see that, although
AGR is performed with a regularization on all data-
points, it is equivalent to a regularization on anchors
with a graph Laplacian ~L. This is understandable, as the
labels of other datapoints are actually inferred from
anchors.

Then, the optimal A can be computed as follows:

A ¼ ðZT
l Zl þ g~LÞ�1

ZT
l Yl: (5)

Finally, we can employ the solved labels associated with
anchors to predict the hard label for unlabeled samples as

byi ¼ argmaxj2f1;...;cg
Zi� �A�j

�j
; i ¼ lþ 1; . . . ; n; (6)

where Zi� 2 R1�m denotes the ith row of Z, A�j 2 Rm�1 is the

jth column of A, and the normalization factor �j ¼ 1TZA�j,
suggested as a useful normalization strategy in [54], balan-
ces skewed class distributions.

3.2 Analysis of Anchor Graph Regularization

The AGR model has been widely used in many applications
for its capability in dealing with relatively large datasets.
However, the approach has limitations in the local weight
estimation and adjacency matrix design, which are analyzed
below.

The first limitation comes from the LAE method for local
weight estimation.We demonstrate this fact by a toy example.
Fig. 1 illustrates a toy example in a 3D space, in which the
LAE method attempts to reconstruct the datapoint x1 by
anchors u1, u2, u3 and minimizes kx01 � x1k2, where x01 is a

reconstructed datapoint. Usually, to follow the shift-invariant
and nonnegativeweight requirements, we introduce two con-

straints 1Tzhii ¼ 1 and zhii � 0 into the geometry reconstruc-

tion problem, as in Eq. (2). We put x1 at the origin of the
coordinate according to the shift-invariant constraint. Under
these constraints, all feasible reconstructed datapoints are lim-
ited in the region enclosed by these anchors, such as simplex
aa, as shown in Fig. 1a. It means that for x1, the value of
kx01 � x1k2 is at least the distance from x1 to aa, i.e., the length

of the blue line segment. Therefore, the best reconstructed
point x	1, following Eq. (2), is the crossover point as shown in
this figure. This point x	1 is on the boundary of the closed
region aa and is linearly reconstructed by merely u1 and u2,
e.g., 0:5� u1 þ 0:5� u2. This is to say, the local weight
between x1 and u3 is zero. In addition, if we set up a plane
along the nearest boundary and make it perpendicular to aa,
namely bb, and then change the positions of these anchors like
Fig. 1b, we can see that this zero weight will not change as
long as u3 and x1 are at different sides of the plane bb, even if
u3 is closer to x1 thanu1 andu2, because the best reconstructed
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point x	1 is still on the boundary. As shown in Fig. 1c, only
when u3 and x1 are at the same side of bb, x	1 will move inside
the simplex aa, and the previous zero weight can change to a
positive value. We have discussed the situation above where
s ¼ 3. However, this geometric interpretation can also be eas-
ily extended to the casewhere s > 3. From Fig. 1d, we can see
the difference is that the region enclosed by anchors now
becomes a closed space, i.e., aa0, and bb0 now lies along the
boundary simplex of aa0 which is closest to x1. Similarly, from
this figure, we can see that the local weight between x1 and
the anchor, which is on the opposite space of bb0, namely u4, is
always zero. In addition to the above problem, computational
cost can also be a disadvantage of LAE, despite several strate-
gies have been applied in [21] to speed up the process.

The second limitation is the adjacency matrix design. After
describing the local connection between datapoints and their
neighboring anchors,we consider building the adjacency rela-
tionship in the whole data space for graph regularization. For
instance, we obtain a part of local weights as listed in Fig. 2a.
To view these values graphically, we also use a toy example
in Fig. 2b to show the relationship between these points,
where the length of the edge represents the Euclidean dis-
tance between the datapoints and anchors. Now, if we calcu-

late the adjacency weight according to Eq. (3) with these local

weights, we have W12 ¼
Pm

k¼1
Z1kZ2k
Lkk

¼ 0:3�0:4
L11

þ 0:4�0:3
L22

þ 0:3�0:3
L33

and W34 ¼
Pm

k¼1
Z3kZ4k
Lkk

¼ 0:1�0:1
L11

þ 0:1�0:1
L22

þ 0:8�0:8
L33

. Further, if

we suppose that Lkk is nearly the same in homogeneous

regions, such as in Fig. 2b, we can obtain W12 ¼ 0:33
Lkk

and

W34 ¼ 0:66
Lkk

. In this context, the adjacency weights of x1&x2 and

x3&x4 can be numerically quite different, although the Euclid-
ean distances between them are nearly the same. Therefore,
this issue is likely to introducemistakes in the remaining steps
of graph-based SSL tasks.

4 EFFICIENT ANCHOR GRAPH REGULARIZATION

To address the above issues in AGR, we accordingly pro-
pose two improvements. First, we introduce a fast local
anchor embedding method in anchor graph construction,
which reformulates the local weight estimation problem to
better measure Z and speeds up optimization. Second, we
directly design a normalized graph Laplacian over anchors
and show that it is more effective than the reduced graph
Laplacian in AGR. More details are given in the following.

4.1 Fast Local Anchor Embedding (FLAE)

Apart from LAE described above, there exist other similar
methods for local weight estimation like LLE [31], LLC
[39], and LLA [41]. However, these methods either do not
enforce weights to be non-negative or impose the non-
negative constraint into objective function via inequality.
In the former cases, non-negative similarity measures can-
not be guaranteed. In the latter cases, limitation still exists
when datapoints are outside of the convex envelope of
anchors, according to the analysis in Section 3.2.

Fig. 1. 3-D toy example for datapoint reconstruction with anchors.

Fig. 2. Example of the adjacency modeling.
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Therefore, here we aim to design a better local weight
matrix Z to tackle these problems. We call our new
weight estimation method Fast Local Anchor Embedding
as we will demonstrate that the optimization problem has
an analytical solution and can be implemented fast. It is
worth mentioning here that, although we use a close
name, the formulation of FLAE and its solution are actu-
ally quite different from the conventional LAE method. In
fact, we have made two changes.

Change 1. Instead of the inequality constraint, we use
absolute constraint in geometric reconstruction. Since the
non-negative property in similar measurement is impor-
tant to guarantee the global optimum of graph-based
SSL [21], inequality constraint has been employed in
most local weight estimation methods, e.g., LAE and
LLA. However, as illustrated in Section 3.2, it would
introduce additional mistakes when the datapoint is out-
side of convex envelope of anchors. Therefore, we
integrate the non-negative property from another per-
spective: absolute operator. To this end, we set

zhii ¼ jchiij and the constraint 1Tjchiij ¼ 1 is imposed to

follow the shift-invariant requirement in our geometric
reconstruction problem. Then, we can obtain the local
weight vector zhii for each datapoint xi, corresponding to

the following problem:

argmin
ci

kxi �Uhiichiik2 (7)

s:t:1Tjchiij ¼ 1:

Compared with LAE, Eq. (7) can be a more direct model
to handle the non-negative property in similarity measure.
However, since there lacks a straightforward solution of the
optimization problem, here we obtain a solution via shrink-
ing the domain of the above problem.

Specifically, we first drop the absolute constraint in our
model, which reduces the problem to a simple coding
problem as:

argmin
ĉhii

kxi �Uhiiĉhiik2 (8)

s:t:1Tĉhii ¼ 1:

And the solution can be derived analytically by:

~chii ¼ Ci
�11; (9)

ĉhii ¼ ~chii=1T~chii; (10)

where Ci ¼ ðUT
hii � 1xi

TÞðUT
hii � 1xi

TÞT 2 Rs�s is a data
covariance matrix.

Then, we compute our local weight vector zhii after
obtaining the code ĉhii as follows:

r ¼ 1Tjĉhiij (11)

chii ¼ ĉhii=r; (12)

zhii ¼ jchiij: (13)

As we can see, the above solution chii satisfies the

constraint 1Tjchiij ¼ 1, it means this chii is a feasible solu-

tion of Eq. (7). Meanwhile, we can have the following
conclusion.

Proposition 1. The minimum of Eq. (8) will not greater than the
minimum of Eq. (2).

We leave the proof of the proposition to appendix.
Then, our task is to demonstrate that, with the above

solution, the value of the objective function in Eq. (7) is not
greater than the value of Eq. (8) with its optimal solution
ĉhii. If this conclusion can be drawn, it means that our

method can lead to a smaller reconstruction error than LAE,
and the effectiveness of our approach can be validated. The
details are as follows.

Recall that, by solving Eq. (8), we obtain the optimal solu-
tion ĉhii. Clearly, there are two possible cases regarding the
obtained codes ĉij 2 ĉhii : (1) 8 ĉij � 0; and (2) 9 ĉij < 0.

Then, we follow Eqs. (11), (12) to yield codes chii.
For the first case, we obtain chii ¼ ĉhii. It means that the

value of the objective function in Eq. (7) with our feasible
solution is the same with the value of Eq. (8) with its optimal
solution.

We then mainly focus on the second case. Since the
obtained code ĉhii satisfies the constraint 1Tĉhii ¼ 1, we first
substitute it into the objective function in Eq. (8) to yield the
minimum of Eq. (8) as

kxhii1Tĉhii �Uhiiĉhiik2 ¼ k~Uhiiĉhiik2; (14)

where ~Uhii ¼ ½Uhiið:; 1Þ � xi; . . . ;Uhiið:; sÞ � xi� can be viewed
as the new coordinates of s closest anchors of xi in the data-
point-centered coordinate system.

Then, according to Eqs. (11), (12), we scale the code ĉhii in
Eq. (14) by a constant r and obtain the value of the objective
function in Eq. (7) with our feasible solution chii,

k~Uhiichiik2 ¼ k 1
r
~Uhiiĉhiik

2

¼ 1

r2
k~Uhiiĉhiik2: (15)

Since 9 ĉij < 0, we have r > 1. Therefore, we obtain the
inequality relation that the value of Eq. (15) is smaller than
Eq. (14).

Up to now, we have demonstrated that the value of the
objective function in Eq. (7) with our feasible solution is not
greater than the value of Eq. (8) with its optimal solution,
which means we can obtain a smaller reconstruction error
than LAE. Moreover, our analytical solution based on
Eqs. (9)-(13) is much faster than the iterative solution
obtained by LAE.

Change 2. We further incorporate the locality con-
straint into local weight estimation. To enhance coding
efficiency, the locality constraint functions in other
similar methods [21], [41] are replaced by using s closest
anchors (landmarks), like approximated LLC [39] does.
However, this manipulation is insufficiently suitable,
because it ignores the real distance between local
points (an negative example is shown in Fig. 1b). We
therefore suggest keeping the locality constraint while
using s closest anchors in local weight estimation
simultaneously.
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We obtain local weight vector zhii ¼ jchiij according to the
following objective:

argmin
ci

kxi �Uhiichiik2 þ �kdhii 
 chiik2 (16)

s:t:1Tjchiij ¼ 1;

where 
 denotes the element-wise multiplication. dhii is the
locality adaptor that allows a different freedom for each
anchor proportional to its distance to the datapoint xi. Spe-
cifically,

dhiiðkÞ ¼ exp
kxi �Uhiið:; kÞk2

s

 !
; k ¼ 1; . . . ; s (17)

where the parameter s is used to adjust the weight decay
speed for the locality adaptor.

Similarly, we can obtain a feasible solution as before. The
only change compared to the pervious processes is that we
replace Eq. (9) with

~chii ¼ ðCi þ � diagðdhiiÞÞ�11: (18)

To summarize, we demonstrate the steps of FLAE in
Algorithm 1.

Algorithm 1. Fast Local Anchor Embedding (FLAE)

Input: datapoints fxigni¼1 2 Rd�1, anchor set obtained from K-

means U 2 Rd�m, parameters s and �.
for i ¼ 1 to n do
1. For xi, find s nearest neighbors in U and record the index

set hii.
2. Measure the locality adaptor dhii for datapoint xi with its

nearest neighbors Uhii via Eq. (17).
3. Compute the code chii via Eq. (18), and Eqs. (10)-(12).
4. Obtain the final solution zhii via Eq. (13).
5. Zi;hii ¼ zThii.

end for
Output: FLAE matrix Z .

4.2 Normalized Graph Laplacian over Anchors

We consider a graph as a stable one if it satisfies the cluster
assumption, which means nearby datapoints are likely to
have the same labels. Obviously, it is important for building
a well performed anchor-graph-based SSL classification
model. In Section 3.2, we have observed the limitation of the
anchor graph built based on the conventional adjacency
between datapoints. As demonstrated in Section 3.1, in
anchor graph regularization, the regularization on all data-
points is actually equivalent to regularization on anchors
with a reduced graph Laplacian, which is built over only
anchors. Therefore, here we directly design an adjacency
matrix among anchors and then derive a normalized graph
Laplacian over anchors. For clarity, we use the subscripts
i; j; k and s; t; r to denote the indices of datapoints
and anchors respectively in this section. The details are
as follows.

Recall that the label for each datapoint is estimated as a
weighted average of the labels of the anchor set via Eq. (1),
which only involves the local weight vector of the datapoint

and the labels of its nearest anchors. Given local weights,
the label vectors of the nearest anchors are crucial to the
final label prediction for the datapoint. If two nearby data-
points share a lot of nearest anchors, their labels are likely
to be similar. However, nearby datapoints are not guaran-
teed to have identical nearest anchors quite often. Fig. 3
illustrates a toy example, where the nearest anchors of
nearby pairwise datapoints x1 and x2 are the same while
those of x1 and x3 are not. We prefer the Laplacian matrix
has the following characteristics: 1) the elements corre-
sponding to the nearby pairwise anchors should be nega-
tive, which means these anchors tend to have similar labels;
2) the elements corresponding to dissimilar pairwise
anchors should be zero, which means their labels are irrele-
vant [27]. To this end, we design the adjacency matrix
between anchors as

W ¼ ZTZ; (19)

where Wst ¼
Pn

k¼1 ZksZkt. Accordingly, its normalized
Laplacian matrix is

�L ¼ I�D�1=2WD�1=2; (20)

where the diagonal matrix D is defined as Dss ¼
Pm

t¼1 Wst.
Note that our adjacency matrix actually explores all data-
points as the transitional points rather than anchors alone.
Thus, our model keeps the computational efficiency of the
anchor graph regularization and its effectiveness in
regularization.

As for AGR, it constructs an n� n adjacency matrix as

W ¼ ZL�1ZT. Based on this, AGR employs the following

reduced Laplacian matrix ~L over anchors for its regulariza-
tion function

~L ¼ ZTðI� ZL�1ZTÞZ; (21)

¼ ZTZ� ZTðZL�1ZTÞZ:
Now we compare the two m�m Laplacian matrices

over anchors, according to the previously mentioned char-
acteristics. For convenience, we take a non-diagonal element
Lst for example, which is computed as

Lst ¼ �aZT�s Z�t for EAGR;

ZT�s Z�t � ZT�s ðZL�1ZTÞZ�t for AGR ;

(
(22)

where a ¼ ðDssDttÞ�
1
2, Z�s 2 Rn�1 denotes the sth col of Z.

We discuss the sign of Lst in the following two cases
according to the relations of the pairwise anchors us&ut.

(1) The first case is that us&ut share at least one common
datapoint xi, namely, they are nearby. For EAGR,

we clearly have Lst ¼ �aZT�s Z�t � �aZisZit < 0.

Fig. 3. Toy example of the nearest anchors of datapoints.
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However, for AGR, the sign of the element Lst

depends on the values of ZT�s Z�t and ZT�s ðZL�1ZTÞZ�t.
Therefore, the element Lst can be positive, zero, or
negative. If Lst > 0, these nearby anchors tend to
have different labels. If Lst ¼ 0, these nearby anchors
tend to be irrelevant. When Lst < 0, we can obtain
the expected result, that is, nearby anchors tend to
have similar labels. In short, the labels of nearby
pairwise anchors in EAGR are enforced to be similar,
while this is uncertain for AGR.

(2) The second case is that us&ut does not share any
common datapoint, namely, they are dissimilar.

For EAGR, we have Lst ¼ �aZT�s Z�t ¼ 0. However,

for AGR, although ZT�s Z�t is zero, ZT�s ðZL�1ZTÞZ�t
may still be positive, which makes Lst negative.
For example, anchors us&ut connect with two
different datapoints xi&xj respectively, and these
datapoints share another anchor ur simulta-
neously. Then, we obtain Lst < 0, since

Lst ¼ 0� ZT�s ðZL�1ZTÞZ�t < 0� Zis ðZL�1ZTÞijZjt,

where ðZL�1ZTÞij � ZirL
�1
rr Zjr > 0 and Zis > 0,

Zjt > 0. Therefore, unexpected negative Laplacian
weights could exist between dissimilar anchors in
AGR model while our EAGR is free from this
situation.

Later in Section 5.2, based on real-world datasets, we will
show several examples by comparing the number of non-
zero elements at the non-diagonal positions of the above
m�m Laplacian matrices. In conclusion, based on the pro-
posed W, we can better describe the adjacency between
anchors and make the smoothness constraint more effective
for the stable anchor graph construction. As the common
linked datapoints are used as transitional points in building
W, we note that our adjacency matrix W is totally different
from the simple kNN graph, which only depends on the
sparse anchors themselves.

4.3 Learning on Anchor Graph

Now we consider a standard multi-class SSL task. Given a
set of labeled datapoints xi ði ¼ 1; . . . ; lÞ with the corre-
sponding discrete label yi 2 f1; . . . ; cg, our goal is to
predict the labels on the remaining unlabeled real data-

points associated with anchors. Let Yl ¼ ½y1T; y2T; . . . ;
yl

T�T 2 Rl�c denote a class indicator matrix on labeled data-

points with Yij ¼ 1 if xi belongs to class j and Yij ¼ 0 other-
wise. Suppose that, for each datapoint, we obtain a label

prediction function ffi ¼ zTi A where A ¼ ½a1T; a2T;
. . . ; am

T�T 2 Rm�c denotes the prediction label matrix on the

anchor set. Specifically, ai 2 R1�c is the label vector of the

anchor ui. Then, we combine anchors with datapoints to
build a model called Efficient Anchor-Graph Regularization
(EAGR) for SSL as follows:

argmin
A

Xl
i¼1

kzTi A� yik
2 þ g

2

Xm
i;j¼1

Wijk aiffiffiffiffiffiffiffi
Dii

p � ajffiffiffiffiffiffiffi
Djj

p k
2
: (23)

We can also present this optimization problem in the fol-
lowing matrix form:

argmin
A

kZlA� Ylk2F þ gtrðAT�LAÞ; (24)

where �L ¼ I�D�1=2WD�1=2 2 Rm�m is the previously intro-
duced normalized Laplacian matrix, k � kF stands for the
Frobenius norm, and g > 0 is the trade-off parameter.

With simple algebra, we can obtain a globally optimal
solution for the anchors’ label matrix as follows:

A ¼ ðZT
l Zl þ g�LÞ�1

ZT
l Yl: (25)

This yields a closed-form solution for handling large
scale SSL tasks. Lastly, like AGR, we utilize the local weight
matrix with anchors’ soft scores to predict the hard labels
for unlabeled datapoints as Eq. (6).

To summarize, our EAGR consists of the following
steps: (1) finding anchors by K-means; (2) estimating the
local weight matrix Z by FLAE, as illustrated in Algo-
rithm 1; (3) computing the normalized Laplacian matrix
�L over anchors via Eq. (20); (4) carrying out the graph
regularization via Eq. (25); and (5) predicting the hard
labels on unlabeled datapoints via Eq. (6). As we can
see, our EAGR keeps the simplicity of AGR and tends to
be much faster, since it efficiently solves the local weight
estimation with FLAE. To be clear, Tables 1 and 2 show
the storage costs and time complexity of several semi-
supervised learning algorithms, where n is the number
of datapoints, m is the number of anchors, s is the num-
ber of the closest anchors to a datapoint, d is the dimen-
sion of features, and t is the number of iterations in the
corresponding iterative optimization process.

TABLE 1
Comparison of Storage Costs of Three Graph-Based Methods

Approach Storage

Learning with Local and Global Consistency (LLGC) [51] Oðn2Þ
Anchor Graph Regularization (AGR) [21] OðmnÞ
Efficient Anchor Graph Regularization (EAGR) OðmnÞ

TABLE 2
Comparison of Computational Complexities of Three Graph-Based Methods

Approach Find anchors Design Z (reduced) graph Laplacian L Graph Regularization

LLGC _ _ Oðdn2Þ Oðn3Þ
AGR OðmndtÞ Oðmnsþ s2dntÞ Oðm2nÞ Oðm2nþm3Þ
EAGR OðmndtÞ Oðmnsþ s2dnÞ Oðm2nÞ Oðm2nþm3Þ
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5 EXPERIMENTS

5.1 Data Settings

To evaluate the performance of our EAGR, we conduct
experiments on five widely-used handwritten datasets:
Binary Alphadigits1 (Alphadigits for short), USPS1,
MNIST2, Semeion,2 and Letter Recognition2 (Letter for
short). Following the settings of [21], we divide them into
three groups based on their sizes, that is, number of sam-
ples. It is worthwhile to note that the images in Letter
have already been converted into 16 primitive numerical
attributes (statistical moments and edge counts) to repre-
sent each sample. In other datasets, samples are still pixel
images of different size. For these datasets, we directly
use a high-dimensional vector of normalized grayscale
values to represent each instance. The attributes of these
datasets are listed in Table 3. All the experiments are
implemented on a 2.4 GHz CPU, 32 GB RAM PC.

5.2 On the Two Improvements in EAGR

Before comparing our EAGR with other methods, we con-
duct two experiments to validate the effectiveness of the
two improvements described in Sections 4.1 and 4.2 respec-
tively. For a fair comparison, we define two intermediate
versions between AGR and EAGR as:

(1) AGRþ, which employs FLAE for estimating Z and
use the reduced Laplacian matrix in Eq. (21).

(2) EAGR� , which employs LAE for estimating Z and
use the normalized Laplacian matrix in Eq. (20).

The differences of the methods for comparison are also
summarized in Table 4. For the involved parameters, we
simply set anchor number to 500 and empirically set s to 3
to make the anchor graph sparse. We tune other parameters,
i.e., � and g, to their optimal values. In this way, we can pro-
vide a fair comparison for these algorithms. We randomly
select 10 labeled samples per class and leave the remaining
ones unlabeled for SSL models in this section.

Table 5 shows the classification accuracies of the four dif-
ferent methods. Table 6 presents the average CPU time (in
seconds) of two local estimation methods on different data-
sets. Meanwhile, Table 7 illustrates the number of nonzero
elements at the non-diagonal positions in different Lapla-
cian matrices as mentioned in Sectioin 4.2. From the results,
we have two observations as follows.

First, by comparing AGR+ with AGR, we see that the for-
mer has comparable or better performances than the latter.
In addition, Table 6 reveals that our proposed FLAE in
AGR+ is much faster than LAE in AGR. These performances
demonstrate the efficiency of our improvement on the local
weight estimation.

Second, by comparing EAGR- with AGR, we see that,
although two methods use the same optimized Z, the
EAGR- has better classification performance than AGR on
all five datasets. We can see from Table 7 that the normal-
ized graph Laplacian of EAGR- has less non-zero elements
than the reduced graph Laplacian of AGR. This means that,
with a sparse normalized graph Laplacian, several incorrect
links have been removed.

5.3 Comparison with Other Methods

Here we further compare the proposed EAGR approach
with the following methods.

(1) FLAE-based label inference, which constructs the
local matrix between unlabeled datapoints and the
labeled ones with FLAE, and then predicts labels for
unlabeled datapoints. This method actually introdu-
ces FLAE into the kernel regression approach [3],
since each row vector zi of Z is non-negative and
normalized. The method is denoted as “FLAE-LI”.

(2) The Eigenfunctions method introduced in [11],
which solves the semi-supervised problem in a
dimension-reduced feature space by only working
with a small number of eigenvectors of the Lapla-
cian. The method is denoted as “Eigenfucntion”.

(3) Laplacian Support VectorMachines Trained in the Pri-
mal with preconditioned conjugate gradient, which is
introduced in [26]. We first decompose a c-class classi-
fication problem into c one-versus-rest binary classifi-
cation problems. Prediction is then made by assigning
the sample to the class with the highest decision func-
tion value. Themethod is denoted as “LapSVMp”.

(4) Learning with local and global consistency in [51],
which is a typical graph-based learning method. It
directly computes the affinity matrix with Gaussian
kernel. In our experiments, we use the 6NN strategy
in graph construction and use Gaussian kernel for
weighting the edges. The method is denoted as
“LLGC”.

(5) Prototype Vector Machines with the Square Loss in
[47], [48], which is a scale-up graph-based semi-
supervised learning for multi-label classification
tasks using a set of sparse prototypes derived from
the data and the Gaussian kernel is used to define
the graph affinity. The method is denoted as “PVM”.

(6) Anchor Graph Regularization, which employs clus-
tering centers as anchors with LAE, is proposed in
[21]. It is the prime counterpart in our experiments,
and we aim to improve its performance. The method
is denoted as “AGR”.

Since the last two methods and EAGR are based on either
the anchors or the prototypes, we group them into
“landmark-based learning” methods and perform K-means
to obtain these cluster centers as the landmarks. Aiming at a
fair comparison, the radius parameters of the Gaussian ker-
nel in the methods (2-4) are set by five-fold cross-validation.
The trade-off parameters in regularization of the above
methods are empirically tuned to their optimal values.

5.3.1 Small Size Datasets

We first conduct experiments on two small datasets: Alpha-
digits and Semeion. For the three landmark-based methods,

TABLE 3
Details of the Five Datasets

Alphadigits Semeion USPS Letter MNIST

# of instances 1,404 1,593 11,000 20,000 60,000
# of categories 36 10 10 26 10
# of features 320 256 256 16 784

1. available at http://cs.nyu.edu/~roweis/data.html
2. available at http://archive.ics.uci.edu/ml/
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we empirically set the landmark number to 500 and
l ¼ f1; 2; . . . ; 10g labeled samples per class. The average
classification accuracies with standard deviations over 10
trials are illustrated in Fig. 4. As a general trend, it can be
seen that, as the number of labeled data increases, the per-
formances of all methods become better. In addition, we
observe that the performances of the LapSVMp, LLGC,
PVM, AGR, and EAGR methods stay at a higher level than
Eigenfunction. The reason is that the former produce a
good complete graph to model the data distribution, while
the latter builds a backbone graph only. Specifically, the
proposed EAGR method has the similar standard devia-
tions with AGR, and it achieves the best accuracy among all

landmark-based SSL methods in most cases, which demon-
strates the effectiveness of the improved relationship
modeling.

Besides classification accuracies, we record the imple-
mentation time costs of the above algorithms with 10
labeled samples per class in Table 8. It is noted that the time
costs of K-means clustering in the three landmark-based
SSL methods are listed separately in the table and the time
excluding clustering is listed at the right side. As can be
seen, excluding the time costs of K-means, our EAGR
method is faster than AGR and PVM, which demonstrates
the efficiency of our improvement among landmark-based
methods. Although the total time costs of these landmark-

Fig. 4. Classification accuracy versus the number of labeled samples on small-size datasets.

TABLE 4
Comparison of AGR, EAGR, AGR+, and EAGR-

AGR AGR+ EAGR- EAGR

local weight matrix Z LAE FLAE LAE FLAE
(reduced) graph Laplacian ZTZ� ZTðZL�1ZTÞZ ZTZ� ZTðZL�1ZTÞZ I�D�1=2ZTZD�1=2 I�D�1=2ZTZD�1=2

For AGR and AGR+, we demonstrate the reduced graph Laplacian over anchors.

TABLE 5
Comparison on Classification Accuracy (Mean�std) of Different Anchor-Graph-Based Approaches

AGR AGR+ EAGR- EAGR

Alphadigits 64:43� 1:06 65:21� 1:32 65:27� 0:76 65:92� 0:71
Semeion 85:16� 1:25 87:05� 1:10 85:31� 0:92 87:17� 1:33
USPS 86:53� 1:34 86:21� 1:46 87:62� 1:20 87:21� 1:33
Letter 57:35� 0:81 60:40� 0:97 58:28� 0:97 61:31� 1:04
MNIST 86:66� 1:14 86:51� 1:19 88:54� 1:06 88:45� 0:94

TABLE 6
Comparison on the Time Costs (Seconds) of
Different Local Weight Estimation Approaches

LAE FLAE

Alphadigits 2.03 0.23
Semeion 2.34 0.28
USPS 15.81 1.80
Letter 27.35 2.80
MNIST 79.06 11.01

TABLE 7
Number of Non-Zero Elements at the Non-Diagonal
Positions in Different Graph Laplacian Matrices

Alphadigits Semeion USPS Letter MNIST

AGR 19,580 21,540 189,330 152,556 697,658
EAGR- 3,340 3,540 25,252 24,276 68,172

For AGR, we count the numbers in reduced graph Laplacian matrices over
anchors. We can see that the normalized graph Laplacian of EAGR- is more
sparse.
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based methods are larger than LLGC on these small data-
sets, we will see that LLGC will be quite slow on large data-
sets. Here we have simply used K-means to obtain cluster
centers like [21], as clustering is not the focus of this work.
In fact, many fast clustering algorithms can be explored to
improve the speed of this process [1], [10].

5.3.2 Medium Size Datasets

For the USPS and Letter datasets, we empirically set the
landmark number to 2,000 by taking both effectiveness and
efficiency into consideration. Averaged over 10 trials, we
calculate the classification accuracies with standard devia-
tions for the referred methods. The results of USPS and Let-
ter are shown in Fig. 5. Here we have the following three
observations. First, although FLAE-LI produces reasonable
results, it has lower accuracy than semi-supervised methods
in most cases. This demonstrates the importance of graph
construction which utilizes unlabeled samples in regulari-
zation. Second, although all the methods perform poorly
when the number of labeled samples is small, the two
anchor-graph-based methods are clearly superior to LLGC.
A possible reason is that the fitting constraints of both AGR
and EAGR are built on the labeled samples while the
constraints of LLGC are built on the whole set. The fitting
effects of AGR and EAGR, therefore, are more biased

towards labeled information than that of LLGC. Third,
when the number of labeled samples increases, the perform-
ances of all methods become better and the accuracy of
EAGR improves more significantly than AGR. The reason is
that, as the number of labeled samples increases, these clas-
sifiers model the characteristics of different classes better.
However, this increase also makes the classifiers tend to be
overfitted, which needs to be handled by an effective
smoothness constraint. Owning to the better relationship
modeling in the data space to meet this requirement, EAGR
addresses the limitation of AGR as expected.

We also demonstrate the implementation time costs of
the above algorithms with 10 labeled samples per class in
Table 9. We can observe that, although LapSVMp is faster
than LLGC, it is still computationally expensive on the
larger data set, e.g., Letter, as its time complexity is qua-
dratic with respect to n. The landmark-based learning algo-
rithms, especially EAGR, need much less implementation
costs than LLGC. In addition, the K-means clustering pro-
cess accounts for the main portion of the EAGR’s time cost.
Therefore, if we can reduce the clustering time by employ-
ing other fast clustering algorithms [1], [10] or just selecting
a part of the database samples to run K-means like [43], the
advantage of our EAGR over the other two in terms of
speed is expected to be greater.

TABLE 8
Time Costs (Seconds) of the Compared Learning Algorithms on Small-Size Datasets

Landmark-based Learning Others

K-means AGR EAGR PVM FLAE-LI Eigenfunction LapSVMp LLGC

Alphadigits 2.10 +2.17 +0.28 +0.32 0.14 0.95 7.25 0.73
Semeion 2.01 +2.48 +0.30 +0.34 0.13 0.73 1.13 0.83

Fig. 5. Classification accuracy versus the number of labeled samples on medium-size datasets.

TABLE 9
Time Costs (Seconds) of the Compared Learning Algorithms on Medium-Size Datasets

Landmark-Based Learning Others

K-means AGR EAGR PVM FLAE-LI Eigenfunction LapSVMp LLGC

USPS 59.00 +20.72 +4.45 +16.43 0.69 4.95 56.68 120.67
Letter 11.15 +35.42 +7.16 +25.04 1.14 1.09 139.39 432.73
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5.3.3 Large Size Dataset

For the MNIST dataset, we empirically set the landmark
number to 2,000 in the three landmark-based methods.
Fig. 6 shows the results of the algorithms on MNIST.
We can observe that the two anchor-graph-based meth-
ods are clearly superior to LLGC when the number of
labeled samples is small. Similar to the results in the pre-
vious experiments, we see that our method achieves

better performance than AGR and PVM. Meanwhile,
Table 10 also demonstrates that our EAGR is more
advantageous than the AGR and PVM methods in terms
of speed for the large dataset.

5.4 On the Parameters � and g

Finally, we test the sensitivity of the two parameters � and g

involved in the proposed algorithm. For convenience, we
simply set anchor number to 500 and empirically set s ¼ 3.
We first set g to 1 and vary � from 0.001 to 1,000. Fig. 7
shows the performance curve with respect to the variation
of �. From the figure, we observe that our method consis-
tently outperforms AGR, and the performances stay at a sta-
ble level over a wide range of parameter variation. We then
vary the value of g from 0.001 to 1,000 for both EAGR and
AGR (� ¼ 10). Fig. 8 demonstrates the performance varia-
tion. We can see that EAGR is superior to AGR when g

varies in a wide range and the curve of EAGR has a peak
when g ¼ 1 in most cases. These observations demonstrate
the robustness of the parameter selection in applying our
method to different datasets.

6 CONCLUSION

This work introduces a novel scalable graph-based semi-
supervised learning algorithm named Efficient Anchor
Graph Regularization (EAGR). It improves the AGR
approach in the following two aspects. First, in anchor graph

Fig. 6. Classification accuracy versus the number of labeled samples on
the large-size dataset.

TABLE 10
Time Costs (Seconds) of the Compared Learning Algorithms on Large-Size Dataset

Landmark-Based Learning Others

K-means AGR EAGR PVM FLAE-LI Eigenfunction LapSVMp LLGC

MNIST 168.43 +130.07 +35.15 +87.74 5.59 27.40 3296.71 9521.15

Fig. 7. Average performance curves of EAGR with respect to the variation of �. Here, the number of labeled samples is set to 10 per class.
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construction, it employs a novel fast local anchor embedding
method to better measure the local weights between data-
points and neighboring anchors. Second, in anchor graph
regularization, it employs a novel normalized graph Lapla-
cian over anchors, which works better than the reduced
graph Laplacian in AGR. For each improvement, we have
provided an in-depth analysis on the limitation of the con-
ventional method and the advantages of the new method.
Experiments on publicly available datasets of various sizes
have validated our EAGR in terms of classification accuracy
and computational speed.

APPENDIX

PROOF OF PROPOSITION 1

First, we present the following lemma.

Lemma 1. Suppose f1 is the minimization problem with objective
function g in domain A, f2 is the minimization problem with
the same objective function g in domain B, and B 
 A, then
for the optimal solution to f1, e.g., xA, and the optimal solution
to f2, e.g., xB, we have gðxAÞ � gðxBÞ.
The proof of the above lemma is clear. Since xB is the

optimal solution to f2 in domain B, we have xB 2 B. Note
B 
 A, so xB 2 A. Therefore, if gðxAÞ > gðxBÞ, xA is not the
optimal solution to f1 in domain A.

Now we prove Proposition 1. Clearly, both Eq. (8) and
Eq. (2) have the same objective function. In addition, if A

denotes the domain of Eq. (8), i.e., 1Tĉhii ¼ 1 and B

denotes the domain of Eq. (2), i.e., 1Tzhii ¼ 1; zhii � 0, we

have B 
 A. According to LEMMA 1, the minimum of
Eq. (8) is not greater than the minimum of Eq. (2), which
completes the proof.
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